Light non-magnetic steels based on Fe – 25 Mn – 5 Ni – Al – C system
https://doi.org/10.17073/0368-0797-2020-1-47-56
Abstract
1.7 %) contents on phase transformations, structure formation processes and mechanical properties of Fe – 25Mn – 5Ni – Al – C steels was studied theoretically and experimentally. The authors have estimated intervals of optimal crystallization regimes and subsequent deformation-thermal effects for obtaining austenitic steels with high specific strength. Measurements of hardness on the section of samples and mechanical tests in a wide interval of temperatures of cold, warm and hot deformation were performed as well as the assessment of phase structure of steels (alloys) on the basis of Fe – 25Mn – 5Ni– – Al – C. In a cast state alloy with 5 % of Al was non-magnetic, i.e. it had austenitic structure; alloys with 10 – 15 % of Al were magnetic with two-phase structure (γ + α). Aluminum considerably increases deformation resistance. At the same time values σ1 and σmax grow, i.e. also deformation hardening grows and softening processes are slowed down. With growth of deformation rate, influence of Al becomes stronger. Austenitic high-manganese alloys with 5 % of Al both with low and with high content of carbon have rather high plasticity and durability, and differ in high stability of austenite. Alloying with nickel increases plasticity. Alloys with Al less than 10 % are rather plastic also in a cast state. High-manganese (from 25 % of Mn) alloys with Al content to 5 – 7 % can be considered as high-strength cold-resistant and heat-resistant with thermally and mechanically stable austenite up to carbon content ~1.5 %.
About the Authors
L. M. KaputkinaRussian Federation
Dr. Sci. (Phys.–Math.), Professor, Chief Researcher of the Chair “Metal Forming”
A. G. Svyazhin
Russian Federation
Dr. Sci. (Eng.), Professor, Chief Researcher of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection
I. V. Smarygina
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Plastic Deformation of Special Alloys
V. E. Kindop
Russian Federation
Cand. Sci. (Eng.), Senior Researcher, Deputy Head of Science Department
References
1. Moor E.D., Gibbs P.J., Speer J.G., Matlock D. Strategies for thirdgeneration advanced high-strength steel development // Iron and Steel Technology. 2010. Vol. 7. No. 11. P. 133 – 144.
2. Kim S., Kim G., Chin K. Development of high manganese TWIP steel with 980 MPa tensile strength // Proc. of the Int. Conf. on New Developments in Advanced High-Strength Sheet Steels, 15–18 June 2008, Orlando. – USA, Orlando, 2008. Р. 249 – 256.
3. Svyazhin A.G., Kaputkina L.M. High nitrogen steels: today and tomorrow // Proc. of the 11th Int. Conf. on High Nitrogen Steels and Interstitial Alloys (HNS 2012), 27 – 29 September 2012, Chennai. – India, Chennai: VRK Printing House. 2013. P. 11 – 22.
4. Frommeyer G., Bruex U. Microstructures and mechanical properties of high-strength Fe–Mn–Al–C light-weight TRIPLEX steels // Steel Research International. 2006. Vol. 77. No. 9. Р. 627 – 633.
5. Ishida K., Ohtani H., Satoh N. etc. Phase equilibria in Fe–Mn–Al–C alloys // ISIJ International. 1990. Vol. 30. No. 8. P. 680 – 686.
6. Goretskii G.P., Gorev K.V. Phase equilibria in Fe–Mn–Al–C alloys. Izvestiya AN SSSR. Metallurgiya. 1990, no. 2, pp. 218–222. (In Russ.)
7. Acselrad O., Kalashnikov I.S., Silva E.M. etc. Phase transformation in Fe-Mn-Al-C austenite steels with Si addition // Metallurgical and Materials Transactions. A. 2002. Vol. 33. No. 11. P. 3569 – 3573.
8. Storchak N.A., Drachinskaya A.G. Strengthening of Fe–Mn–Al–C alloys during ageing. Physics of Metals and Metallography. 1977, vol. 44, no. 2, pp. 123–130.
9. Sato K., Tagawa K., Inoue Y. Modulated structure and magnetic properties of age-hardenable Fe–Mn–Al–C alloys // Metallurgical Transactions. A. 1990. Vol. 21. No. 1. P. 5 – 11.
10. Han K.H., Choo W.K., Choi D.Y., Hong S.P. Age hardening in Fe– –Mn–Al–C austenitic alloys // TMS-AIME. 1987. P. 91 – 106. 11. Han H.N., Oh C.-S., Kim G., Kwon O. Design method for TRIPaided multiphase steel based on a microstructure-based modeling for transformation-induced plasticity and mechanically induced martensitic transformation // Materials Science and Engineering. A. 2009. Vol. 499. No. 1. P. 462 – 468.
11. Pottore N., Fonstein N., Gupta I., Bhattacharya D. A family of 980 MPa tensile strength advanced high strength steels with various mechanical property attributes // Proc. of the Int. Сonf. on Advanced high-strength sheet steels for automotive applications, 6–9 June 2004, Colorado. – USA, Colorado: Winter Park, 2004. P. 119 – 129.
12. Kimura Y., Handa K., Hayashi K., Mishima Y. Microstructure control and ductility improvement of the two-phase γ-Fe/κ–(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system // Intermetallics. 2004. Vol. 12. No. 6. P. 607 – 617.
13. Kimura Y., Hayashi K., Handa K., Mishima Y. Microstructural controlfor strengthening the γ-Fe/E21–(Fe, Mn)3AlCx alloys // Materials Science and Engineering. A. 2002. Vol. 329 – 331. Р. 680 – 685.
14. Choo W.K., Kim J.H. Microstructural and mechanical property changes on precipitation of intermetallic к’ cubic carbide phase in the Fe–Mn(Ni)–Al–C solid solution // Proc. of the Int. Сonf.
15. on Thermomechanical processing of steels and other materials (THERMEC’97), 7 – 11 July 1997, Wollongong. – Australia, Wollongong: TMS, Warrendale, Pa, 1997. P. 1631 – 1637.
16. Kalashnikov I., Shalkevich A., Acselrad O., Pereira L.C. Chemical composition optimization for austenitic steels of the Fe–Mn–Al–C system // Journal of Materials Engineering and Performance. 2000. Vol. 9. No. 6. P. 597 – 602.
17. Kalashnikov I.S., Acselrad O., Shalkevich A. etc. Heat treatment and thermal stability of Fe–Mn–Al–C alloys // Journal of Materials Processing Technology. 2003. Vol. 136. No. 1 – 3. P. 72 – 79.
18. Acselrad O., Kalashnikov I.S., Silva E.M. etc. Diagram of phase transformation in the austenite of hardened alloy Fe–28 % Mn– –8.5 % Al – 1 % C – 1.25 % Si as a result of aging due to isothermal heating // Metal Science and Heat Treatment. 2006. Vol. 48. No. 11 – 12. P. 543 – 553.
19. Tian X., Tian R., Wei X., Zhang Y. Effect of Al content on work hardening in austenitic Fe–Mn–Al–C alloys // Canadian Metallurgical Quarterly. 2004. Vol. 43. No. 2. P. 183 – 192.
20. Chiou S.-T., Cheng W.-C., Lee W.-S. Strain rate effects on the mechanical properties of a Fe–Mn–Al alloy under dynamic impact deformations // Materials Science and Engineering. A. 2005. Vol. 392. No. 1 – 2. P. 156 – 162.
21. Acselrad O., Pereira L.C., Dille J., Delplancke J.-L. Room-temperature cleavage fracture of Fe–Mn–Al–C steels // Metallurgical and Materials Transactions. A. 2004. Vol. 35. No. 12. P. 3863 – 3866.
22. Hallstedt B., Khvan A.V., Lindahl B.B. etc. PrecHiMn-4 – A thermodynamic database for high-Mn steels // Calphad. 2017. Vol. 56. P. 49 – 57.
23. Zheng W., He S., Selleby M. etc. Thermodynamic assessment of the Al–C–Fe system // Calphad. 2017. Vol. 58. P. 34 – 49.
24. Zheng W., Lu X.-G., Mao H. etc. Thermodynamic modeling of the Al–C–Mn system supported by ab initio calculations // Calphad. 2018. Vol. 60. P. 222 – 230.
25. Bronz A.V., Kaputkin D.E., Kaputkina L.M. etc. Effect of chemical composition on the crystal lattice and physical properties of ironmanganese alloys with high content of aluminum // Metal Science and Heat Treatment. 2014. Vol. 55. No. 11 – 12. P. 647– 651.
26. Svyazhin A.G., Bazhenov V.E., Kaputkina L.M. etc. Nitrogen in Fe–Mn–Al–C-based system // CIS Iron and Steel Review. 2016. Vol. 12. P. 13 – 17.
27. Kaputkina L.M., Svyazhin A.G., Kaputkin D.E. etc. Effect of Mn, Al, Ni and C content on the equilibrium phase composition of alloys based on the Fe–Mn–Al–C system // Metallurgist. 2016. Vol. 59. No. 11 – 12. P. 1075 – 1080.
28. Kaputkina L.M., Svyazhin A.G., Smarygina I.V. Hardening of austenitic nitrogen high-manganese aluminum alloys under heat and thermomechanical treatment // Metal Science and Heat Treatment. 2016. Vol. 57. No. 11. P. 705 – 712.
29. Kaputkina L.M., Svyazhin A.G., Smarygina I.V., Kindop V.E. Strength of “light” ferritic and austenitic steels based on the Fe– –Mn–Al–C system // Metal Science and Heat Treatment. 2017. Vol. 58. No. 9 – 10. P. 515 – 519.
Review
For citations:
Kaputkina L.M., Svyazhin A.G., Smarygina I.V., Kindop V.E. Light non-magnetic steels based on Fe – 25 Mn – 5 Ni – Al – C system. Izvestiya. Ferrous Metallurgy. 2020;63(1):47-56. (In Russ.) https://doi.org/10.17073/0368-0797-2020-1-47-56