Surface tension and density of Fe – Mn melts
https://doi.org/10.17073/0368-0797-2020-1-40-46
Abstract
The article presents original experimental data on surface tension of the melts Fe100 – x Mnx (x = 4 ... 13 wt. %). Surface tension and density of the melt was measured by the method of sessile drop at heating from the liquidus temperature up to 1780 °C and subsequent cooling of the sample in the atmosphere of high-purity helium. Temperature and concentration dependences of surface tension and density of Fe – Mn melts was constructed. Manganese is a surface-active substance in iron melt. The value of surface tension coefficient of Fe – Mn melts decreases while Mn content increases. Experimental data on the surface tension of Fe – Mn melts is consistent with the theoretical dependences (Pavlova-Popiel equation and the Shishkovsky equation). During the study of microheterogeneity of Fe – Mn melts, correlation between the values of kinematic viscosity, surface tension and density was determined. Dependence of the fluidity of Fe – Mn melts on their density in the cooling mode has a linear character which indicates the implementation of the Bachinsky law. Discrepancy of values of the ratio of melt viscosity to the surface tension coefficient was obtained from experimental data and was calculated by the empirical formula. According to the experimental data on viscosity and surface tension of Fe – Mn melts, the authors have evaluated the entropy change in volume of the melt and change of surface entropy of the melt, respectively. Surface entropy of the melt and entropy in the melt volume decreases in absolute value with increase of Mn content in it. According to the results of the work, it was concluded that there is no destruction of the microheterogeneous structure of Fe100 – x Mnx melts (x = 4 ... 13 wt. %) when heated up to 1780 °С.
About the Authors
N. I. SinitsinRussian Federation
Junior Researcher, Postgraduate of the Chair of Physics
O. A. Chikova
Russian Federation
Dr. Sci. (Phys.–Math.), Professor of the Chair of Physics
V. V. V’yukhin
Russian Federation
Senior Researcher of the Research Center of Physics of Metallic Liquids of the Institute of Materials and Metallurgy
References
1. Vlasov V.I., Komolova E.F. Litaya vysokomargantsevaya stal’ G13L. Svoistva i proizvodstvo [Cast high manganese steel G13L. Properties and production]. Moscow: Mashgiz, 1963, 195 p. (In Russ.).
2. Grässel O., Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe – Mn – Si – Al steels. Materials Science and Technology. 1998, vol. 14, no. 12, pp. 1213–1217.
3. Frommeyer G., Brüx U., Neumann P. Supra-ductile and highstrength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ International. 2003, vol. 43, no. 3, pp. 438–446.
4. Grässel O., Krüger L., Frommeyer G., Meyer L.W. High strength Fe – Mn – (Al, Si) TRIP/TWIP steels development – properties – application. International Journal of Plasticity. 2000, vol. 16, no. 11-12, pp. 1391–1409.
5. Idrissi H., Renard K., Ryelandt L., Schryvers D., Jacques P.J. On the mechanism of twin formation in Fe-Mn-C TWIP steels. Acta Materialia. 2010, vol. 58, pp. 2464–2476.
6. Zhuang C., Liu J., Mi Z., Jiang H., Tang D., Wang G. Non-metallic inclusions in TWIP steel. Steel Research International. 2014, vol. 85, no. 10, pp. 1432–1439.
7. So K.H., Kim J.S., Chun Y.S., Park K.-T., Lee Y.-K., Lee C.S. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5AI-0.6C TWIP steel. ISIJ International. 2009, vol. 49, no. 12, pp. 1952–1959.
8. Lee J., Hoai L.T., Shin M. Density and surface tension of liquid Fe – Mn alloys. Metallurgical and Materials Transactions B. 2011, vol. 42, no. 3, pp. 546–549.
9. Hoai L.T., Lee J. Density of liquid Fe – Mn – C alloys. Metallurgical and Materials Transactions B. 2011, vol. 42, no. 5, pp. 925–927.
10. Hoai L.T., Lee J. Effect of surface adsorption of carbon on the surface tension of liquid Fe–Mn–C alloys. Journal of Materials Science. 2012, vol. 47, no. 24, pp. 8303–8307.
11. Dubberstein T., Heller H.-P., Klostermann J. etc. Surface tension and density data for Fe–Cr–Mo, Fe–Cr–Ni, and Fe–Cr–Mn– –Ni steels. Journal of Materials Science. 2015, vol. 50, no. 22, pp. 7227–7237.
12. Adolf Z., Plura J, Parma V. Effect of Carbon on Surface Tension in Fe – Mn – C, Fe – Si – C, Fe – P – C, and Fe – S – C Melts. Hutnicke Listy. 1987, vol. 42, no. 8, pp. 537–544.
13. Popel’ S.I., Tsarevskii B.V., Dzhemilev N.K. Isotherms of density and surface tension of Fe – Mn melts. Fizika metallov i metallovedenie. 1964, vol. 18, no. 3, pp. 158–160. (In Russ.).
14. Van Tszin-Tan, Karasev R.A., Samarin A.M. Surface tension of Fe – Mn and Fe – S melts. Izvestiya AN SSSR. Otdelenie tekhnicheskikh nauk. Metallurgiya i toplivo. 1960, vol. 2, pp. 49–52. (In Russ.).
15. Nakamoto M., Tanaka T. Estimation of activity coefficient of solute in infinite dilute liquid iron based on surface tension of binary liquid Fe alloys. Journal of the Iron and Steel Institute of Japan. 2019, vol. 105, no. 3, pp. 53–57.
16. Wang J., Bian M., Ma L. Composition in surface of liquid Fe – Mn and Fe – S systems. Acta Metallurgica Sinica. 1986, vol. 22, no. 3, pp. a270–a274.
17. Keene B.J. Review of data for the surface tension of iron and its binary alloys. International Materials Reviews. 1988, vol. 33, no. 1, pp. 1–37.
18. Gedgagova M.V., Guketlov Kh.M., Kumykov V.K., Manukyants A.R., Sergeev I.N., Sozaev V.A. High-temperature measurements of surface tension of metals in vacuum. Bulletin of the Russian Academy of Sciences: Physics. 2007, vol. 71, no. 5, pp. 608–610.
19. Direktor L.B., Zaichenko V.M., Maikov I.L. Improved method of sessile drop for determining the surface tension of liquids. Teplofizika vysokikh temperatur. 2010, vol. 48, no. 2, pp. 193–197. (In Russ.).
20. Ostrovskii O.I., Grigoryan V.A., Vishkarev A.F. Svoistva metallicheskikh rasplavov [Properties of metallic melts]. Moscow: Metallurgiya, 1988, 304 p.
21. Chikova O., Sinitsin N., Vyukhin V., Chezganov D. Microheterogeneity and crystallization conditions of Fe – Mn melts. Journal of Crystal Growth. 2019, vol. 527, аrticle 125239.
22. Popel’ S.I. Poverkhnostnye yavleniya v rasplavakh [Surface phenomena in melts]. Moscow: Metallurgiya, 1994, 440 p. (In Russ.).
23. Semenchenko V.K. Poverkhnostnye yavleniya v metallakh i splavakh [Surface phenomena in metals and alloys]. Moscow: Gostekhizdat, 1957, 491 p. (In Russ.).
24. Eremenko V.N., Ivanov M.I., Lukashenko G.M., etc. Fizicheskaya khimiya neorganicheskikh materialov: T. 2 [Physical chemistry of inorganic materials: Vol. 2]. Eremenko V.N. ed. Kiev: Naukova dumka, 1988, 192 p. (In Russ.).
25. Korol’kov A.M. Surface tension of aluminum and its alloys. Izvestiya akademii nauk SSSR. Tekhnicheskie nauki. 1956, no. 2, pp. 35–42. (In Russ.).
26. Nizhenko V.I. Eremenko V.N. Surface activity of metals in liquid metals. Poroshkovaya metallurgiya. 1964, no. 2, pp. 11–18. (In Russ.).
27. Fomenko V.S. Emissionnye svoistva khimicheskikh elementov i ikh soedinenii. Spravochnik [Emission properties of chemical elements and their compounds]. Samsonov G.V. ed. Kiev: Naukova dumka, 1964, 104 p. (In Russ.).
28. Summ B.D. New correlations of surface tension with volume properties of liquids. Vestnik Moskovskogo Universiteta Seriya 2 Khimiya. 1999, vol. 40, no. 6, pp. 400–405. (In Russ.)
Review
For citations:
Sinitsin N.I., Chikova O.A., V’yukhin V.V. Surface tension and density of Fe – Mn melts. Izvestiya. Ferrous Metallurgy. 2020;63(1):40-46. (In Russ.) https://doi.org/10.17073/0368-0797-2020-1-40-46