Cold resistance of new casting Cr – Mn – Ni – Mo – N steel with 0.5 % of N. Part. 1
https://doi.org/10.17073/0368-0797-2019-11-894-906
Abstract
The authors have studied cold resistance of thelaboratorymetal of a new austenitic grade of nitrogen-containing casting steel (21 – 22) Cr – 15Mn – 8Ni – 1.5Mo – V (Russian grade 5Kh21АG15N8МFL) with nitrogen content of 0.5 % and yield strength of ~400 MPa. The temperature dependence of impact toughness was constructed in the range +20 ... –160 °C and it was shown that the steel is characterized by a wide temperature range of the viscous-brittle transition with T DBT = –75 °C, at which KCV = 120 ± 10 J/cm2. Comparison material – industrial, centrifugally cast 18Cr – 10Ni steel (grade 12Kh18N10-CC) has such a KCV level at +20 °C. It is not prone to viscous-brittle transition, its impact strength decreases more gently and at temperatures lower than –80 °C and its KCV level is higher than that of nitrous steel. However, in the entire range of climatic temperatures, nitrous casting steel with 0.5 % of N exceeds its impact strength. The studied steels have residual δ-ferrite in the cast structure in an amount of up to ~10 % in Cr– Ni industrial steel and a smaller amount in laboratory nitrous steel. It is enriched by chromium, up to 26 and 34 wt. % respectively, and contains ~14 % of Mn in nitrogen steel. Presence of Mn does not affect the nature of fractures at climatic temperatures. However, δ-ferrite of nitrous steel at –160 °C is beyond the cold brittle threshold. Therefore, its fracture obtained at this temperature contains numerous cracks in δ-ferrite crystals. The critical fragility temperature below which this material is not recommended for use is Тк ≈ –110 °С; it was determined by the criterion method. It corresponds to a level of KCV of 68 – 83 J/cm2, higher than the level of KCU at +20 °C, allowed by the standard of the Russian Federation for castings from austenitic class of steels (up to 59 J/cm2 ). Based on a comparison of literature and our own data, it was concluded that it is impossible to ensure high cold resistance and, at the same time, high strength, due to alloying of economically alloyed nickel (up to 4 %) corrosion-resistant steels by 0.5 – 0.6 % of N.
About the Authors
M. V. KostinaRussian Federation
Dr. Sci. (Eng.), Assist. Professor, Senior Researcher, Head of the Laboratory “Physicochemistry and Mechanics of Metallic Materials”
Moscow
P. Yu. Polomoshnov
Russian Federation
Acting Junior Researcher of the Laboratory “Physicochemistry and Mechanics of Metallic Materials”
Moscow
V. M. Blinov
Russian Federation
Dr. Sci. (Eng.), Professor, Chief Researcher of the Laboratory of Constructional Steels and Alloys
Moscow
S. O. Muradyan
Russian Federation
Cand. Sci. (Eng.), Research Associate of the Laboratory “Physicochemistry and Mechanics of Metallic Materials”
Moscow
V. S. Kostina
Russian Federation
Acting Junior Researcher of the Laboratory “Physicochemistry and Mechanics of Metallic Materials”
Moscow
References
1. Solntsev Yu. P. Khladostoikie stali i splavy [Cold resistant steels and alloys]. St. Petersburg: Khimizdat, 2005, 476 p. (In Russ.).
2. Arzamasov B.N. Materialovedenie: ucheb. dlya vuzov [Materials Science: Textbook for universities]. Moscow: Mashinostroenie, 1986, 384 p. (In Russ.).
3. Harzenmoser M.A., Reed R.P., Uggowitzer P.J. The influence of nickel and nitrogen on the mechanical properties of high-nitrogen austenitic steels at criogenic temperatures. In: HNS 90, Aachen (Germany). October 1990. Dusseldorf, 1990, pp. 197–203.
4. Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Materials Science and Engineering: R. 2009, vol. 65, Issues 4-6, pp. 39–104.
5. Timmerhaus K.D., Reed Richard Palmer. Cryogenic Engineering: Fifty Years of Progress. Springer 2007.
6. Speidel M.O. Nitrogen containing austenitic stainless steels. Mat.Wiss. und Werkstofftech. 2006, vol. 37, no. 10, pp. 875–880.
7. Leffler B. (2013) Stainless Steels and their Properties. Available at URL: http://www.hazmetal.com/f/kutu/1236776229.pdf.
8. Uggowitzer P., Magdowski R, Speidel M.O. Nickel free high nitrogen austenitic steels. ISIJ International. 1996, vol. 36, no. 7, pp. 901–908.
9. Young S. Han, Soon H. Hong. The effects of thermo-mechanical treatments on superplasticity of Fe–24Cr–7Ni–3Mo–0.14N duplex stainless steel. Scripta Materialia. March 1997, vol. 36, no. 5, pp. 557–563.
10. Simmons J.W. Overview: high-nitrogen alloying of stainless steels. Materials Science and Engineering: A. March 1996, vol. 207, no. 2, pp. 159–169.
11. Vijayalakshmi M., Shankar P., Sudha C. Microstructural aspects and thermodynamic stability of nitrogen bearing stainless steel. In: U. Kamatchi Mudali, Baldev Raj (Eds.) High nitrogen steels and stainless steels – Manufacturing, properties and applications, Monograph of the Proc. of Int. Conf. on High Nitrogen Steels, ASM International. Materials Park, Ohio, 2004, pp. 113–132.
12. Gavriljuk V.G. Nitrogen in iron and steel. ISIJ International. 1996, vol. 36, no. 7, pp. 738–745.
13. Valentin G. Gavriljuk, Hans Berns. High Nitrogen Steels: Structure, Properties, Manufacture, Applications. Berlin; Heidelberg: New York: Springer – Verlag, 1999, 379 p.
14. Rawers J.C., Doan R.C. Mechanical alloying in reactive and nonreactive gas atmospheres. Metallurgical and Materials Transactions A. 1994, vol. 25, no. 2, pp. 381–388.
15. Byoungchul Hwang, Tae-Ho Lee, Seong-Jun Park, Chang-Seok Oh, Sung-Joon Kim. Correlation of austenite stability and ductile-tobrittle transition behavior of high-nitrogen 18Cr – 10Mn austenitic steels. Materials Science and Engineering: A. September 2011, vol. 528, no. 24, pp. 7257–7266.
16. Yuan Z., Dai Q., Cheng X., Chen K., Xu W. Impact properties of high-nitrogen austenitic stainless steels. Materials Science and Engineering A. 2008, vol. 475, no. 1, pp. 1202–1206.
17. Bannykh O.A., Blinov V.M., Kostina M.V., Lyakishev N.P., Rigina L.G., Gorynin I.V., Rybin V.V., Malyshevskii V.A., Kalinin G.Yu., Yampol’skii V.D., Butskii E.V., Rimkevich V.S., Sidorina T.N. Vysokoprochnaya nemagnitnaya korrozionno-stoikaya svarivaemaya stal’ [High strength non-magnetic corrosion-resistant weldable steel]. Patent RF no. 2205889. Publ. 06.10.2003. (In Russ.).
18. Blinov V.M., Bannykh O.A., Il’in A.A., Sokolov O.G., Kostina M.V., Blinov E.V., Rigina L.G., Zvereva T.N. Vysokoprochnaya i vysokovyazkaya nemagnitnaya svarivaemaya stal’ [High strength and high viscosity non-magnetic weldable steel]. Patent RF no. 2303648. Byulleten’ izobretenii. 2007, no. 21. (In Russ.).
19. Malakhov N.V., Orlov V.V., Golosienko S.A., Rybakov S.A., Sheremet N.P., Khlusova E.I., Legostaev Yu.L., Semicheva T.G., Mal’tsev A.B., Tomin A.A., Malyshevskii V.A. Vysokoprochnaya khladostoikaya stal’ [High strength cold resistant steel]. Patent RF no. 2562734. Publ. 09.10.2015. (In Russ.).
20. Kaibyshev R.O., Belyakov A.N., Odnobokova M.V., Tikhonova M.S., Dolzhenko P.D. Khladostoikaya austenitnaya vysokoprochnaya stal’ [Cold resistant austenitic high strength steel]. Patent RF no. 2608251. Publ. 17.01.2017. (In Russ.).
21. Krivtsov Yu.S., Kolchin G.G., Gorobchenko S.L. Possibility of using cast steel for cryogenic construction. In: Prochnost’ i razrushenie stalei pri nizkikh temperaturakh [Strength and fracture of steels at low temperatures]. Moscow: Metallurgiya, 1990, pp. 215–219. (In Russ.).
22. Gorobchenko S.L., Krivtsov Yu.S., Andreev A.K., Solntsev Yu.P. Competitiveness of reinforcing castings outside impact strength or the use of a new integrated method to confirm the reliability of austenitic steels for cryogenic reinforcement. Truboprovodnaya armatura i oborudovanie: Electronic resource. Available at URL: http:// www.valverus.info/popular/3219-konkurentosposobnost-armaturnogo-litya.html (In Russ.).
23. Bannykh O.A., Blinov V.M., Blinov E.V., Kostina M.V., Muradyan S.O., Rigina L.G., Solntsev K.A. Vysokoprochnaya liteinaya nemagnitnaya korrozionno-stoikaya stal’ i izdelie, vypolnennoe iz nee [High-strength foundry non-magnetic corrosion-resistant steel and a product made from it]. Patent RF no. 2445397. Publ. 20.03.2012. (In Russ.).
24. Kostina M.V., Bannykh O.A., Blinov V.M., Muradyan S.O., Khadyev M.S. Development of a new foundry highly corrosion-resistant and high-strength austenitic steel alloyed with nitrogen. Part 3. Structure and mechanical properties of the new foundry high-nitrogen corrosion-resistant Cr–Mn–Ni–Mo–N steel. Zagotovitel’nye proizvodstva v mashinostroenii. 2011, no. 9, pp. 39–45. (In Russ.).
25. Kostina M.V., Muradyan S.O., Khadyev M.S., Korneev A.A. Phase transformations in a corrosion-resistant high-chromium nitrogenbearing steel. Russian Metallurgy (Metally). 2011, vol. 2011, no. 9, pp. 813–825.
26. Muradyan S.O. Struktura i svoistva liteinoi korrozionnostoikoi stali, legirovannoi azotom: dis…kand. tekhn. nauk [Structure and properties of casting stainless steel alloyed with nitrogen: Cand. Sci. Diss.]. Moscow: IMET RAN, 2016. (In Russ.).
27. Kazakov A.A., Kiselev D. Industrial application of Thixomet image analyzer for quantitative description of steel and alloy’s. Microstructure. Metallography, Microstructure, and Analysis. 2016, vol. 5, no. 4, pp. 294-301.
28. Kazakov A.A., Oryshchenko A.S., Fomina O.V., ZhitenevA.I., Vikhareva T.V. Controlling behavior of δ-ferrite in nitrogen-containing chromium–nickel–manganese steels. Inorganic Materials: Applied Research. 2017, vol. 8, no. 6, pp. 817–826.
29. Pashkov Yu.I. On the kind of the cold-brittleness threshold of metals. Zavodskaya laboratoriya. 1988, no. 7, pp. 87–90.
30. Metodika opredeleniya protsenta vyazkoi sostavlyayushchei v izlome udarnykh obraztsov (dlya uluchshaemoi stali). Prilozhenie 3 k GOST 4543-71 [Method for determining the percentage of viscous component in the fracture of impact samples (for improved steel). Application 3 to GOST 4543–71]. (In Russ.).
31. Thak Sang Byun, Timothy G. Lach. Mechanical properties of 304L and 316L austenitic stainless steels after thermal aging for 1500 hours. Light Water Reactor Sustainability Program. U.S. Depart of Energy Office of Nuclear Energy. September 2016. Available at URL: https://lwrs.inl.gov/Materials%20Aging%20and%20Degradation/Mechanical_Properties_of_304L_and_316L_Austenitic_ Stainless_Steels_after_Thermal_Aging_for_1500_Hours.pdf.
32. Oldfield W. Curve fitting impact test data: A statistical procedure. ASTM Standardization News. 1975, vol. 3, no. 11, pp. 24–29.
33. Yeager K. Nonlinear curve fitting and the Charpy impact test: statistical, mathematical, and physical considerations. Available at URL: https://www.uakron.edu/dotAsset/2116623.pdf.
34. Botvina L.R., Blinov V.M., Tyutin M.R., Bannykh I.O., Blinov E.V. Fracture of high-nitrogen 05Kh20G10N3AMF steel during impact loading. Russian Metallurgy (Metally). 2012, vol. 2012, no. 3, pp. 239–247.
35. Byoungchul Hwang, Tae-Ho Lee, Seong-Jun Park, Chang-Seok Oh, Sung-Joon Kim. Ductile-to-brittle transition behavior of high-nitrogen 18Cr–10Mn–0.35N austenitic steels containing Ni and Cu. Materials Science Forum. Vols. 654-656, pp 158–161.
36. PNAE G-7-002-86: Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok. Prilozhenie 2. Metody opredeleniya mekhanicheskikh svoistv konstruktsionnykh materialov. 5. Metodika opredeleniya kriticheskoi temperatury khrupkosti [PNAE G-7-002-86: Standards for calculating the strength of equipment and pipelines of nuclear power plants. Application 2 Methods for determining the mechanical properties of structural materials. 5. Methodology for determining the critical temperature of fragility]. (In Russ.).
37. Kazakov A.A., Fomina O.V., Zhitenev A.I., Mel’nikov P.V. Physico-chemical fundamentals of controlling the nature of δ-ferrite at welding with austenitic-ferritic materials. Voprosy Materialovedeniya. 2018, vol. 96, no. 4, pp. 42–52. (In Russ.).
38. Speidel M.O. Applications and services. In: High Nitrogen Austenitic Steel and Stainless Steels, Kalpakkam, 2002.
39. Vologzhanina S.A., Igolkin A.F. Khladostoikie materialy. Laboratornye raboty: Ucheb.-metod. posobie [Cold resistant materials. Lab: Teaching aid]. St. Petersburg: Universitet ITMO, 2015, 42 p. (In Russ.).
40. Shiyong Liu, Deyi Liu, Shicheng Liu. Transgranular fracture in low temperature brittle fracture of high nitrogen austenitic steel. Journal of Materials Science. September 2007, vol. 42, no. 17, pp. 7514–7519.
41. Gulyaev A.P. Metallovedenie. Uchebnik dlya vuzov [Metallurgy. Textbook for universities]. Moscow: Metallurgiya, 1986, 544 p. (In Russ.).
42. Bannykh O.A., Blinov V.M., Kostina M.V., Blinov E.V., Kalinin G.Yu. Effect of hot-rolling and heat-treatment conditions on the structure and mechanical and technological properties of nitrogenbearing austenitic steel 05Kh22AG15N8M2F-Sh. Russian Metallurgy (Metally). 2006, vol. 2006, no. 4, pp. 306–313.
43. Songtao Wang, Ke Yang, Yiyin Shan, Laifeng Li. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels. Materials Science & Engineering A. August 2008, vol. 490, Issues 1–2, pp. 95–104.
44. Tomota Y, Xia Y, Inoue K. Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels. Acta Mater. 1998, vol. 46, no. 5, pp. 1577–1587.
45. GOST 977-88. Otlivki stal’nye. Obshchie tekhnicheskie usloviya [GOST 977-88. Steel castings. General specifications]. (In Russ.).
Review
For citations:
Kostina M.V., Polomoshnov P.Yu., Blinov V.M., Muradyan S.O., Kostina V.S. Cold resistance of new casting Cr – Mn – Ni – Mo – N steel with 0.5 % of N. Part. 1. Izvestiya. Ferrous Metallurgy. 2019;62(11):894-906. (In Russ.) https://doi.org/10.17073/0368-0797-2019-11-894-906