COMPUTATIONAL METHOD FOR DETERMINING TEMPERATURE DEPENDENCIES OF LINEAR EXPANSION COEFFICIENT OF CARBON ALLOYS
https://doi.org/10.17073/0368-0797-2019-10-790-795
Abstract
About the Authors
D. I. GabelayaRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Metallurgy, Machine Building and Technological Equipment
Z. K. Kabakov
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair of Metallurgy, Machine Building and Technological Equipment
M. A. Mashchenko
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Metallurgy, Machine Building and Technological Equipment
References
1. Vargaftik N.B. Teplofizicheskie svoistva veshchestv [Thermophysical properties of substances]. Leningrad: Gosenergoizdat, 1956, 367 p. (In Russ.).
2. Zinov’ev V.E. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh [Thermophysical properties of metals at high temperatures]. Мoscow: Metallurgiya, 1989, 384 p. (In Russ.).
3. Sorokin V.G., Volosnikova A.V., Vyatkin S.A. etc. Marochnik stalei i splavov [Grade guide and alloys]. Sorokin V.G. ed. Moscow: Mashinostroenie, 1989, 640 p. (In Russ.).
4. Yur’ev S.F. Udel’nyi ob”em faz v martensitnom prevrashchenii austenita [Specific volume of phases in martensitic transformation of austenite]. Мoscow: Metallurgizdat, 1950, 48 p. (In Russ.).
5. Pierer R., Bernhard Ch. High temperature behavior during solidification of peritectic steels under continuous casting conditions. Materials Science and Technology. Oct. 2006, pp. 601–608.
6. Shatov A.Ya., Boikov D.A., Stupak A.A. Linear shrinkage of steel castings, its relation to Fe–Fe3C phase diagram. Vestnik Bryanskogo tekhnicheskogo universiteta. 2007, no. 2, pp. 20–26. (In Russ.).
7. Konovalov A.V., Kurkin A.S. Calculated determination of temperature dependences of thermophysical properties of structural components of low-alloyed steel on its chemical composition. Zavodskaya laboratoriya. Diagnostika materialov. 2013, vol. 79, no. 9, pp. 41–45. (In Russ.).
8. Gabelaya D.I., Kabakov Z.K., Mashchenko M.A. Calculation of changes in specific volumes of Fe – C system alloys depending on carbon content and temperatures. Izvestiya. Ferrous Metallurgy. 2019, vol. 62, no. 8, pp. 627–631. (In Russ.).
9. Kabakov Z.K., Pavzderin A.I., Kozlov G.S., Gabelaya D.I. The determination of the effective heat capacity coefficient of carbon steels. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 2, pp. 15–19. (In Russ.).
10. Kabakov Z.K., Tsyurko V.I. Determination of temperature dependence of true heat capacity of carbon steels taking into account phase transformations. Proizvodstvo prokata. 2012, no. 2, pp. 40–44.
11. Chalmers B. Physical Metallurgy. Wiley series on the science and technology of materials: Wiley, 1959. 468 p.
12. Zimmermann R., Günther K. Metallurgie und Werkstofftechnik – ein Wissensspeicher. Band 1. Leipzig: Deutscher Verlag für Grundstoffindustrie, 1977, 679 p. (In Germ.).
13. Efimov V.A. Razlivka i kristallizatsiya stali [Steel casting and crystallization]. Мoscow: Metallurgiya, 1976, 420 p. (In Russ.).
14. Zhao-zhen Cai, Miao-yong Zhu. Thermo-mechanical behavior of peritectic steel solidifying in slab continuous casting mold and a new mold taper design. ISIJ International. 2013, vol. 53, no. 10, pp. 1818–1827.
15. Meng Y., Li C., Parkman J., Thomas B.G. Simulation of shrinkage and stress in solidifying steel shells of different grade. Solidification Processes and Microstructures: A symposium in honor of Wilfried Kurz TMS (The Minerals, Metals & Materials Society), Charlotte, NC, March 15–18, 2004. Rappaz M. ed. pp. 33–39.
16. Zhu L.-G., Kumar R.V. Shrinkage of carbon steel by thermal contraction and phase transformation during solidification. Ironmaking and Steelmaking. 2007, vol. 34, no 1, pp. 71–75.
17. JMatPro. Practical Software for Material Properties. Available at URL: http://www.sentesoftware.co.uk/jmatpro.aspx (Accessed: 10.06.2019).
18. Guo Z., Saunders N., Miodownik P., Schillé J.-P. Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels. Int. J. Microstructure and Materials Properties. 2009, vol. 4, no. 2, pp. 187–195.
19. Thomas B.G., Ojeda C. Ideal Taper Prediction for Slab Casting. ISSTech Steelmaking Conference, Indianapolis, IN, USA, April 27–30, 2003. Vol. 86. ISS-AIME, Warrendale, PA, 2003, pp. 295–308.
20. Li C., Thomas B.G. Ideal Taper Prediction for Billet Casting. ISSTech Steelmaking Conference, Indianapolis, IN, USA, April 27–30, 2003. Vol. 86. ISS-AIME, Warrendale, PA, 2003, pp. 685–700.
Review
For citations:
Gabelaya D.I., Kabakov Z.K., Mashchenko M.A. COMPUTATIONAL METHOD FOR DETERMINING TEMPERATURE DEPENDENCIES OF LINEAR EXPANSION COEFFICIENT OF CARBON ALLOYS. Izvestiya. Ferrous Metallurgy. 2019;62(10):790-795. (In Russ.) https://doi.org/10.17073/0368-0797-2019-10-790-795