Preview

Izvestiya. Ferrous Metallurgy

Advanced search

COMPUTATIONAL METHOD FOR DETERMINING TEMPERATURE DEPENDENCIES OF LINEAR EXPANSION COEFFICIENT OF CARBON ALLOYS

https://doi.org/10.17073/0368-0797-2019-10-790-795

Abstract

In modeling of shrinkage processes during solidification and  cooling billets on the continuous casting machine there is a need to  determine values of coefficient of linear expansion, depending on  temperature and carbon content. Experimental data to coefficients of  line ar expansion given in reference literature are in most cases limited to a low-temperature interval, the upper limit of which does not  exceed 1200  °C. The values of this coefficient are unknown for high  temperatures. Their calculation definition is carried out recently with  the use of empirical dependences for calculation of change of phases’  specific  volumes  at  temperature  changes.  However,  dependencies  given in the literature are often contradictory. In this regard there was  a need to develop a unified method for determining values of linear  expansion coeffi  cient depending on temperature and carbon content.  In derivation of formulas for calculation of linear shrinkage coefficient, the pre viously obtained expressions for calculation of specific  volumes of Fe – C alloys were taken as a base. Since the change in  specific volume with the temperature significantly affects carbon content, calculation of linear shrinkage coefficient is performed separately  for three intervals of carbon concentrations: 0  –  0.10  %, 0.10  –  0.16  %  and 0.16  –  0.50  %, differing from each other in various phase transformations during solidification and cooling of alloys. An example of  calculated determination of linear shrinkage coefficient is given for  the midpoints of specified intervals. Comparison of the obtained calculation results with known literature and reference data was made.  Adequa cy of the proposed technique was established and possibility of  its use for the research problems solving is shown.

About the Authors

D. I. Gabelaya
Cherepovets State University
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Metallurgy, Machine Building and Technological Equipment


Z. K. Kabakov
Cherepovets State University
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair of Metallurgy, Machine Building and Technological Equipment


M. A. Mashchenko
Cherepovets State University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair of Metallurgy, Machine Building and Technological Equipment



References

1. Vargaftik N.B. Teplofizicheskie svoistva veshchestv [Thermophysical properties of substances]. Leningrad: Gosenergoizdat, 1956,  367  p. (In Russ.). 

2. Zinov’ev V.E. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh [Thermophysical properties of metals at high temperatures]. Мoscow: Metallurgiya, 1989, 384 p. (In Russ.).

3. Sorokin V.G., Volosnikova A.V., Vyatkin S.A. etc. Marochnik stalei i splavov [Grade guide and alloys]. Sorokin V.G. ed. Moscow:  Mashinostroenie, 1989, 640 p. (In Russ.).

4. Yur’ev S.F. Udel’nyi ob”em faz v martensitnom prevrashchenii austenita [Specific volume of phases in martensitic transformation of  austenite]. Мoscow: Metallurgizdat, 1950, 48 p. (In Russ.).

5. Pierer R., Bernhard Ch. High temperature behavior during solidification of peritectic steels under continuous casting conditions. Materials Science and Technology. Oct. 2006, pp. 601–608.

6. Shatov A.Ya., Boikov D.A., Stupak A.A. Linear shrinkage of steel  castings, its relation to Fe–Fe3C phase diagram. Vestnik Bryanskogo tekhnicheskogo universiteta. 2007, no. 2, pp. 20–26. (In Russ.).

7. Konovalov A.V., Kurkin A.S. Calculated determination of temperature dependences of thermophysical properties of structural components of low-alloyed steel on its chemical composition. Zavodskaya laboratoriya. Diagnostika materialov. 2013, vol. 79, no. 9,  pp.  41–45. (In Russ.).

8. Gabelaya D.I., Kabakov Z.K., Mashchenko M.A. Calculation of  changes in specific volumes of Fe – C system alloys depending on  carbon content and temperatures. Izvestiya. Ferrous Metallurgy.  2019, vol. 62, no. 8, pp. 627–631. (In Russ.).

9. Kabakov Z.K., Pavzderin A.I., Kozlov G.S., Gabelaya D.I. The  determination of the effective heat capacity coefficient of carbon  steels. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 2, pp. 15–19.    (In Russ.). 

10. Kabakov Z.K., Tsyurko V.I. Determination of temperature dependence of true heat capacity of carbon steels taking into account phase  transformations. Proizvodstvo prokata. 2012, no. 2, pp. 40–44.

11. Chalmers B. Physical Metallurgy. Wiley series on the science and  technology of materials: Wiley, 1959. 468 p.

12. Zimmermann R., Günther K. Metallurgie und Werkstofftechnik – ein Wissensspeicher. Band 1. Leipzig: Deutscher Verlag für Grundstoffindustrie, 1977, 679 p. (In Germ.).

13. Efimov V.A. Razlivka i kristallizatsiya stali [Steel casting and crystallization]. Мoscow: Metallurgiya, 1976, 420 p. (In Russ.).

14. Zhao-zhen Cai, Miao-yong Zhu. Thermo-mechanical behavior of  peritectic steel solidifying in slab continuous casting mold and a  new mold taper design. ISIJ International. 2013, vol. 53, no. 10,  pp. 1818–1827.

15. Meng Y., Li C., Parkman J., Thomas B.G. Simulation of shrinkage  and stress in solidifying steel shells of different grade. Solidification Processes and Microstructures: A symposium in honor of Wilfried Kurz TMS (The Minerals, Metals & Materials Society), Charlotte, NC, March 15–18, 2004. Rappaz M. ed. pp. 33–39. 

16. Zhu L.-G., Kumar R.V. Shrinkage of carbon steel by thermal contraction and phase transformation during solidification. Ironmaking and Steelmaking. 2007, vol. 34, no 1, pp. 71–75.

17. JMatPro. Practical Software for Material Properties. Available  at URL: http://www.sentesoftware.co.uk/jmatpro.aspx (Accessed:  10.06.2019).

18. Guo Z., Saunders N., Miodownik P., Schillé J.-P. Modelling phase  transformations and material properties critical to the prediction of  distortion during the heat treatment of steels. Int. J. Microstructure and Materials Properties. 2009, vol. 4, no. 2, pp. 187–195.

19. Thomas B.G., Ojeda C. Ideal Taper Prediction for Slab Casting.  ISSTech Steelmaking Conference, Indianapolis, IN, USA, April 27–30, 2003. Vol. 86. ISS-AIME, Warrendale, PA, 2003,    pp.  295–308.

20. Li C., Thomas B.G. Ideal Taper Prediction for Billet Casting.  ISSTech Steelmaking Conference, Indianapolis, IN, USA, April 27–30, 2003.  Vol.  86.  ISS-AIME,  Warrendale,  PA,  2003,    pp. 685–700.


Review

For citations:


Gabelaya D.I., Kabakov Z.K., Mashchenko M.A. COMPUTATIONAL METHOD FOR DETERMINING TEMPERATURE DEPENDENCIES OF LINEAR EXPANSION COEFFICIENT OF CARBON ALLOYS. Izvestiya. Ferrous Metallurgy. 2019;62(10):790-795. (In Russ.) https://doi.org/10.17073/0368-0797-2019-10-790-795

Views: 535


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)