Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF ELECTROLYTIC PLASMA CARBONITRIDING ON STRUCTURAL PHASE STATE OF FERRITIC-PEARLITIC STEELS

https://doi.org/10.17073/0368-0797-2019-10-782-789

Abstract

The change in phase composition and fine texture occurring in the  ferritic-pearlitic 0.18C – 1Cr – 3Ni – 1Mo – Fe, 0.3C – 1Cr – 1Mn – 1Si – Fe  and 0.34C – 1Cr – 1Ni – 1Mo – Fe steels under electrolytic plasma carbonitriding  was  investigated  by  transmission  electron  microscopy  (TEM) method conducted on thin foils. Carbonitriding was implemented by surface saturation with nitrogen and carbon in aqueous  solution under the temperature of 800  –  860  °C during 5  minutes. All  steels were investigated before and after carbonitriding. It was ascertained that in the original state steel is given as a mixture of grains  of pearlite and ferrite. Carbonitriding has led to creation of modified  layers: the bigger was the amount of pearlite before the beginning of  carbonitriding, the thicker was modified layer. Carbonitriding resulted  in significant qualitative changes in phase state and structure of steel.  It was revealed that in the surface area of modified layer along the  matrix, there were also particles of other phases: carbides, nitrides and  carbonitrides. In the course of removing from the surface of carbonitrided sample, their complete set and volume fractions decrease and at  the end of modified layer only one carbide phase is present in all steels,  i.e. cementite. It was found that matrix of all steels after carbonitriding is tempered packet (lath) and lamellar martensite. In the surface  area of carbonitrided layer the volume fractions of lath and lamellar  martensite depend on the original state of steel – the bigger was the  amount of pearlite in steel the less lath martensite and the more lamellar martensite was formed. Such a dependency cannot be observed in  the central area, and at the end of carbonitrided layer volume fractions  of martensite packets and plates are commensurate.

About the Authors

N. A. Popova
Tomsk State University of Architecture and Building
Russian Federation
Cand. Sci. (Eng.), Senior Researcher


E. L. Nikonenko
Tomsk State University of Architecture and Building
Russian Federation
Cand. Sci. (Phys.-Math.), Assist. Professor of the Chair of Physics


A. V. Nikonenko
Tomsk State University of Control Systems and Radioelectronics
Russian Federation
Postgraduate of the Chair of Physics


V. E. Gromov
Siberian State Industrial University
Russian Federation
Dr. Sci. (Phys.-Math.), Professor, Head of the Chair of Science named after V.M. Finkel


O. A. Peregudov
Omsk State Technical University
Russian Federation
Cand. Sci. (Eng.), Assistant to the Rector for Youth Policy


References

1. Boonruang Ch., Kumpangkeaw W., Sopunna K., Chomsaeng N.,  Narksitipan S. Effect of carburizing via current heating technique on  the near surface microstructure of AISI 1020 Steel. Chiang Mai J. Sci. 2012, vol. 39, no. 2, pp. 254–262.

2. Bondarev  A.A.,  Tyurin  Yu.N.,  Pogrebnyak  A.D.,  Kolisnichenko  O.V., Duda I.M. Effect of pulsed plasma and electron beam processing of surface of wear-resistant coatings based on Ni on their  functional properties. Uprochnyayushchie tekhnologii i pokrytiya.  2012, no. 4, pp. 16–20. (In Russ.).

3. Dudareva N.Yu. Effect of microarc oxidation modes on properties  of formed surface. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. 2013, vol. 17, no. 3, pp. 217–222.  (In Russ.).

4. Grin’  R.R.,  Gallyamova  R.F.,  Dudareva  N.Yu.,  Sirenko  A.A.,  Musin  F.F. Structural features of modified layer obtained by microarc oxidation on AK12D alloy. Pis’ma o materialakh. 2014, vol. 4,  no. 3, pp. 175–178. (In Russ.).

5. Grigor’yants A.G., Tret’yakov R.S., Funtikov V.A. Improving quality of surface layers of parts obtained by laser additive technology.  Tekhnologiya mashinostroeniya. 2015, no. 10, pp. 68–73. (In Russ.).

6. Kovaleva M., Tyurin Yu., Vasilik N., Kolisnichenko O., Prozorova M., Arseenko M., Yapryntsev M., Sirota V., Pavlenko I. Effect  of processing parameters on the microstructure and properties of  WC-10Co-4Cr coatings formed by a new multi-chamber gas-dynamic accelerator. Ceramics International. 2015, vol. 41, no. 10,  pp.  15067–15074. 

7. Kiseleva S.K., Zaynullina L.I., Dudareva N.Y. Influence of the microstructure Al-12 % Si alloy on the properties of the oxide layer formed with MAO. Materials Science Forum. 2016, vol. 870,  pp.  481–486. 

8. Muboyadzhyan  S.A.,  Budinovskii  S.A.  Ion-plasma  technology:  promising processes, coatings, equipment. Aviatsionnye materialy i tekhnologii. 2017, no. 5, pp. 39–54. (In Russ.).

9. Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J. Plasma electrolysis for surface engineering. Surface and Coatings Technology. 1999, vol. 122, no. 2-3, pp. 73–93.

10. Gupta P., Tenhundfeld G., Daigle E.O., Ryabkov D. Electrolytic  plasma technology: Science and engineering – an overview. Surface and Coatings Technology. 2007, vol. 201, no. 21, pp. 8746–8760.

11. Belkin  P.N.,  Kusmanov  S.A.  Plasma  electrolytic  hardening  of  steels: Review. Surface Engineering and Applied Electrochemistry.  2016, vol. 52, no. 6, pp. 531–546.

12. Rakhimyanov  Kh.M.,  Eremina  A.S.  Installation  for  chemicalthermal treatment in electrolyte plasma. Sbornik nauchnykh trudov NGTU. 2006, no. 3 (45), pp. 141–144. (In Russ.). 

13. Kulikov  I.S.,  Vashchenko  S.V.,  Kamenev  A.Ya.  Elektrolitnoplazmennaya obrabotka materialov [Electrolytic-plasma processing  of materials]. Minsk: Belaruskaya navuka, 2010, 232 p. (In Russ.).

14. Kusmanov S.A., Shadrin S.Yu., Belkin P.N. Carbon transfer from  aqueous electrolytes to steel by anode plasma electrolytic carburizing. Surface and Coatings Technology. 2014, vol. 258, pp. 727–733.

15. Alfereva T.I., Belkin P.N., Zhirov A.V. Rapid cementation of steel  from a coating under anodic electrolytic heating conditions. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2015, vol. 9, no. 2, pp. 313–316.

16. Belkin P.N., Kusmanov S.A., Dyakov I.G., Komissarova M.R.,  Parfenyuk V.I. Anode plasma electrolytic carburizing of commercial  pure titanium. Surface and Coatings Technology. 2016, vol. 307,  pp.  1303–1309.

17. Skakov M., Rakhadilov B., Batyrbekov E., Scheffner M. Change of  structure and mechanical properties of R6M5 steel surface layer at  electrolytic-plasma nitriding. Advanced Materials Research. 2014,  vol. 1040, pp. 753–758.

18. Kusmanov S.A., Smirnov A.A., Silkin S.A., Belkin P.N. Modification of low-alloy steel surface by plasma electrolytic nitriding. Journal of Materials Engineering and Performance. 2016, vol. 25, no.  7,  pp. 2576–2582.

19. Belkin P.N., Kusmanov S.A. Plasma electrolytic nitriding of steels.  Journal of Surface Investigation. 2017, vol. 11, no. 4, pp. 767–789.

20. Kusmanov S.A., Kusmanova Yu.V., Naumov A.R., Belkin P.N.  Features  of  anode  plasma  electrolytic  nitrocarburising  of  low  carbon steel. Surface and Coatings Technology. 2015, vol. 272,    pp.  149–157.

21. Kusmanov  S.A.,  Dyakov  I.G.,  Kusmanova  Yu.V.,  Belkin  P.N.  Surface modification of low-carbon steels by plasma electrolytic  nitro carburising. Plasma Chemistry and Plasma Processing. 2016,  vol.  36, no. 5, pp. 1271–1286.

22. Kusmanov S.A., Grishina E.P., Belkin P.N., Kusmanova Y.V., Kudryakova N.O. Raising the corrosion resistance of low-carbon steels by electrolytic-plasma saturation with nitrogen and carbon. Metal Science and Heat Treatment. 2017, vol. 59, no 1-2, pp. 117–123.

23. Suminov I.V., Belkin P.N., Epel’fel’d A.V., Lyudin V.B., Krit  B.L.,  Borisov A.M. Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov. V 2 t. T. 1 [Plasma-electrolytic surface  modification of metals and alloys. In 2 vol. Vol. 1]. Moscow: Tekhnosfera, 2011, 464 p. (In Russ.).

24. Popova N.A., Zhurerova L.G., Nikonenko E.L., Skakov M.K. Effect of electrolyte-plasma carbonitriding on phase composition of  30KhGS steel. Materialovedenie. 2016, no. 8, pp. 26–31. (In Russ.).

25. Popova N.A., Erygina L.A., Nikonenko E.L., Skakov M.K., Koneva  N.A., Kozlov E.V. Phase transformations in 0.34С–1Cr–1Ni–  –1Mo–Fe steel under the action of electrolytic plasma nitrocarburizing. Bulletin of the Russian Academy of Sciences: Physics. 2017,  vol. 81, no. 3, pp. 354–356.

26. Popova N.A., Nikonenko E.L., Erbolatova G.U., Kalashnikov M.P.,  Skakov M.K. Phase transformations in 40KhNYu alloy at plasma  chemical-thermal treatment. Fundamental’nye problemy sovremennogo materialovedeniya. 2018, vol. 15, no. 3, pp. 339–347. (In  Russ.).

27. Kozlov E.V., Popova N.A., Kabanina O.V., Klimashin S.I., Gromov  V.E. Evolyutsiya fazovogo sostava, defektnoi struktury, vnutrennikh napryazhenii i pereraspredelenie ugleroda pri otpuske litoi konstruktsionnoi stali [Evolution of phase composition, defective  structure, internal stresses and redistribution of carbon during tempering of cast structural steel]. Novokuznetsk: izd. SibGIU, 2007,  177 p. 177 с. (In Russ.).

28. Ivanov Yu.F., Kozlov E.V. Bulk and surface quenching of structural steel: Morphological analysis of the structure. Russian Physics Journal. 2002, vol. 45, no. 3, pp. 209-231.


Review

For citations:


Popova N.A., Nikonenko E.L., Nikonenko A.V., Gromov V.E., Peregudov O.A. INFLUENCE OF ELECTROLYTIC PLASMA CARBONITRIDING ON STRUCTURAL PHASE STATE OF FERRITIC-PEARLITIC STEELS. Izvestiya. Ferrous Metallurgy. 2019;62(10):782-789. (In Russ.) https://doi.org/10.17073/0368-0797-2019-10-782-789

Views: 793


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)