Preview

Izvestiya. Ferrous Metallurgy

Advanced search

MINERAL COMPOSITION OF DUMP BLAST FURNACE SLAG

https://doi.org/10.17073/0368-0797-2019-10-774-781

Abstract

Industrial wastes, accumulating in a dumping ground, have useful technical properties in many cases, so they can be considered as  secon dary resources. The investigation of slag properties and modifications in different conditions needs a complex approach that includes X-ray phase, electron microscopic and petrographic analyses.  The research aim is to substantiate the resource value of Zaporozhstal  PJSC dump blast furnace slag on the basis of chosen experimental  methods. X-ray phase analysis allows us to discover the minerals of  blast furnace slag that are crystalline: rankinite 3CaO·2SiO2 , quartz  SiO2 , helenite 2CaO·Al2O3·SiO2 , bredigite α-2CaO∙SiO2 , okermanite  2CaO·MgO·2SiO2 and pseudowollastonite α-CaO·SiO2 . The minerals  okermanite, bredigite and pseudowollastonite are technically useful to  produce binders as they are hydraulically active. The mass fraction  of a vitreous component, which composes half of blast furnace slag  mass of Zaporozhstal PJSC, was computed. Amorphous phases testify  on the higher sorption and chemical slag activation that are important  in terms of the use of slag to produce binders. The mass contribution  of amorphous substance state is slightly higher in large fraction slag.  Microphotographs of the surfaces of blast furnace slag particles show  high loosening degree and needle-shaped and lamellar crystallines that  stipulate sorption properties of the slag. The dump blast furnace slag of  Zaporozhstal PJSC can be recommended to produce binders – Portland  cement and Portland slag cement – at totality of chemical parameters:  high concentration of hydraulically active minerals and amorphous  phase, highly developed surface of slag particles and surface sorption  activation.

About the Authors

E. B. Khobotova
Kharkov National Automobile and Highway University
Ukraine
Dr. Sci. (Chem.), Professor of the Chair of Road Construction Material Technologies and Chemistry


M. I. Ignatenko
Kharkov National Automobile and Highway University
Ukraine
Cand. Sci. (Eng.), Assist. Professor of the Chair of Road Construction Material Technologies and Chemistry


O. G. Storchak
Kharkov National Automobile and Highway University
Ukraine
Cand. Sci. (Philology), Assist. Professor of the Chair of Foreign Languages


Yu. S. Kalyuzhnaya
Kharkov National Automobile and Highway University
Ukraine
Cand. Sci. (Eng.), Assist. Professor of the Chair of Road Construction Material Technologies and Chemistry


I. V. Graivoronskaya
Kharkov National Automobile and Highway University
Ukraine
Cand. Sci. (Eng.), Assist. Professor of the Chair of Metrology and Life Safety


References

1. Das B., Prakash S., Misra V.N. An overview of utilization of slag  and sludge from steel industries. Resources Conservation and Recycling. 2007, vol. 50, no. 1, pp. 40–57.  

2. Shlipkhake Kh., Endeman G. Resource saving and circulation economics. Chernye metally. 2017, no. 3, pp. 58–64. (In Russ.).

3. Mohit J. Use and properties of blast furnace slag as a building material. International Journal of Recent Contributions from Engineering, Science & IT (iJES). 2014, vol. 2, no. 4, pp. 54–60.

4. Salman M., Dubois M., Di Maria A., Van Acker K., Van Balen K.  Construction materials from stainless steel slags: technical aspects,  environmental benefits and economic opportunities. Journal of Industrial Ecology. 2016, vol. 20, no. 4, pp. 854–866.

5. Borges  Marinho  A.L.,  Mol  Santos  C.M.,  Carvalho  de  J.M.F.,  Mendes Ju.C., Brigolini G.J., Fiorotti Peixoto R.A. Ladle furnace  slag as binder for cement-based composites. Journal of Materials in Civil Engineering. 2017, vol. 29, no. 11, pp. 849–861. 

6. Kambole C., Paige-Green P., Kupolati W.K., Ndambuki J.M., Adeboje A.O. Basic oxygen furnace slag for road pavements: A review  of material characteristics and performance for effective utilization  in Southern Africa. Construction and Building Materials. 2017,  vol.  148, pp. 618–631. 

7. Sajedi F., Razak H.A. The effect of chemical activators on early  strength of ordinary Portland. Cement-slag mortars. Construction and Building Materials. 2010, vol. 24, no. 10, pp. 1944–1951. 

8. Raia A., Prabakarb J., Rajub C.B., Morchalleb R.K. Metallurgical  slag as a component in blended cement. Construction and Building Materials. 2002, vol. 16, no. 8, pp. 489–494. 

9. Escalante-Garcia J.I., Espinoza-Perez L.J., Gorokhovsky A., Gomez-Zamorano L.Y. Coarse blast furnace slag as a cementitious  material, comparative study as a partial replacement of Portland cement and as an alkali activated cement. Construction and Building Materials. 2009, vol. 23, no. 7, pp. 2511–2517.

10. Shanahan N., Markandeya A. Influence of slag composition on  cracking potential of slag-portland cement concrete. Construction and Building Materials. 2018, vol. 164, no. 3, pp. 820–829.

11. Qiang W., Peiyu Ya. Hydration properties of basic oxygen furnace  steel slag. Construction and Building Materials. 2010, vol. 24,  no.  7, pp. 1134–1140.

12. Chen W., Brouwers H.J.H. The hydration of slag, part 2: reaction models for blended cement. J. Mater Sci. 2007, vol. 42, no. 2,  pp.  444–464. 

13. Bellmann F., Stark J. Activation of blast furnace slag by a new  method.  Cement and Concrete Research. 2009, vol. 39, no. 8,  pp.  644–650.

14. Black L., Ogirigbo O. Influence of slag composition and temperature on the hydration and microstructure of slag blended cements.  Construction and Building Materials.  2016,  vol.  126,  no.  11,  pp.  496–507.

15. Schuldyakov K.V., Kramar L.Ya., Trofimov B.Ya. The properties  of slag cement and its influence on the structure of the hardened cement paste. Procedia Engineering. 2016, vol. 150, pp. 1433–1439.

16. Pribulová A., Futáš P., Baricová D. Processing and utilization of  metallurgical slags. Production Engineering Archives. 2016, vol. 11,  no. 2, pp. 2–5.

17. Criado M., Ke X., Provis J., Bernal S.A. Alternative inorganic binders based on alkali-activated metallurgical slags. In: Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites. 2017, pp. 185–220. 

18. Trofimov B.Ya., Shuldyakov K.V. On the use of inactive blast furnace granulated slag. Arkhitektura, gradostroitel’stvo i dizain. 2015,  no. 6, pp. 37–45. (In Russ.).

19. Tsakiridis P.E., Papadimitriou G.D., Tsivilis S., Koroneos C. Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials. 2008, vol. 152, no. 2, pp. 805–811. 

20. Zeynep I., Prezzi Y., Prezzi M. Chemical, mineralogical and morphological properties of steel slag. Advances in Civil Engineering.  2011, vol. 2011, article ID 463638, 13 p.

21. Zhu G., HaoY., Xia C., Zhang Y., Hu T., Sun S. Study on cementitious properties of steel slag. Journal of Mining and Metallurgy B: Metallurgy. 2013, vol. 49, no. 2, pp. 217–224.

22. Navarro C., Díaz M., Villa-García M.A. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions. Environ. Sci. Technol. 2010, vol. 44, no. 14,  pp. 5383–5388.

23. Khobotova E.B., Ukhan’ova M.І. Metodyka vyznachennya korysnykh vlastyvostei promyslovykh vidkhodiv z metoyu yikh utylizatsiyi v yakosti tekhnichnykh materialiv [Methods for determining useful  properties of industrial wastes in regard of their disposal as technical materials]. Certificate of authorship UA no. 34221. Byulleten′ izobretenii. 2010, no. 22. (In Ukr.).

24. Radiatsionno-gigienicheskaya otsenka stroitel’nykh materialov, ispol’zuemykh v grazhdanskom stroitel’stve USSR [Radiation-hygienic assessment of building materials used in civil engineering of the  Ukrainian SSR]. Kiev, 1987, 21 p. (In Russ.).

25. Bokii G.B., Porai-Koshits M.A. Rentgenostrukturnyi analiz. T. 1.  [X-ray structural analysis. Vol. 1]. Мoscow: Izd-vo MGU, 1964,  492 p. (In Russ.).

26. JCPDS PDF-1 File. ICDD: The International Centre for Diffraction Data, release 1994. PA, USA. Available at URL: http://www. icdd.com. – Title screen. (Accessed: 26.06.2018).

27. Rodriguez-Carvajal J., Roisnel T. Juan Rodriguez-Carvajal. FullProf. 98 and WinPLOTR New Windows 95/NT Applications for  Diffraction. Extended software/methods development: International Union of Crystallography: Newsletter. 1998, no. 20, pp. 35, 36. 

28. Perepelitsyn V.A. Osnovy tekhnicheskoi mineralogii i petrografii [Fundamentals of technical mineralogy and petrography]. Мoscow:  Nedra, 1987, 255 p. (In Russ.).

29. Khobotova E.B., Larin V.I., Kalmykova Yu.S., Ryazantsev A.A.  Metodika rascheta massovoi doli amorfnogo sostoyaniya mine ralov otval’nykh domennykh shlakov [Methodology for calculating mass  fraction of amorphous state of minerals of dump blast furnace slag].  Certificate of authorship UA no. 60123. Byulleten′ izobretenii. 2015,  no. 37.


Review

For citations:


Khobotova E.B., Ignatenko M.I., Storchak O.G., Kalyuzhnaya Yu.S., Graivoronskaya I.V. MINERAL COMPOSITION OF DUMP BLAST FURNACE SLAG. Izvestiya. Ferrous Metallurgy. 2019;62(10):774-781. https://doi.org/10.17073/0368-0797-2019-10-774-781

Views: 2744


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)