MINERAL COMPOSITION OF DUMP BLAST FURNACE SLAG
https://doi.org/10.17073/0368-0797-2019-10-774-781
Abstract
About the Authors
E. B. KhobotovaUkraine
Dr. Sci. (Chem.), Professor of the Chair of Road Construction Material Technologies and Chemistry
M. I. Ignatenko
Ukraine
Cand. Sci. (Eng.), Assist. Professor of the Chair of Road Construction Material Technologies and Chemistry
O. G. Storchak
Ukraine
Cand. Sci. (Philology), Assist. Professor of the Chair of Foreign Languages
Yu. S. Kalyuzhnaya
Ukraine
Cand. Sci. (Eng.), Assist. Professor of the Chair of Road Construction Material Technologies and Chemistry
I. V. Graivoronskaya
Ukraine
Cand. Sci. (Eng.), Assist. Professor of the Chair of Metrology and Life Safety
References
1. Das B., Prakash S., Misra V.N. An overview of utilization of slag and sludge from steel industries. Resources Conservation and Recycling. 2007, vol. 50, no. 1, pp. 40–57.
2. Shlipkhake Kh., Endeman G. Resource saving and circulation economics. Chernye metally. 2017, no. 3, pp. 58–64. (In Russ.).
3. Mohit J. Use and properties of blast furnace slag as a building material. International Journal of Recent Contributions from Engineering, Science & IT (iJES). 2014, vol. 2, no. 4, pp. 54–60.
4. Salman M., Dubois M., Di Maria A., Van Acker K., Van Balen K. Construction materials from stainless steel slags: technical aspects, environmental benefits and economic opportunities. Journal of Industrial Ecology. 2016, vol. 20, no. 4, pp. 854–866.
5. Borges Marinho A.L., Mol Santos C.M., Carvalho de J.M.F., Mendes Ju.C., Brigolini G.J., Fiorotti Peixoto R.A. Ladle furnace slag as binder for cement-based composites. Journal of Materials in Civil Engineering. 2017, vol. 29, no. 11, pp. 849–861.
6. Kambole C., Paige-Green P., Kupolati W.K., Ndambuki J.M., Adeboje A.O. Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilization in Southern Africa. Construction and Building Materials. 2017, vol. 148, pp. 618–631.
7. Sajedi F., Razak H.A. The effect of chemical activators on early strength of ordinary Portland. Cement-slag mortars. Construction and Building Materials. 2010, vol. 24, no. 10, pp. 1944–1951.
8. Raia A., Prabakarb J., Rajub C.B., Morchalleb R.K. Metallurgical slag as a component in blended cement. Construction and Building Materials. 2002, vol. 16, no. 8, pp. 489–494.
9. Escalante-Garcia J.I., Espinoza-Perez L.J., Gorokhovsky A., Gomez-Zamorano L.Y. Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of Portland cement and as an alkali activated cement. Construction and Building Materials. 2009, vol. 23, no. 7, pp. 2511–2517.
10. Shanahan N., Markandeya A. Influence of slag composition on cracking potential of slag-portland cement concrete. Construction and Building Materials. 2018, vol. 164, no. 3, pp. 820–829.
11. Qiang W., Peiyu Ya. Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials. 2010, vol. 24, no. 7, pp. 1134–1140.
12. Chen W., Brouwers H.J.H. The hydration of slag, part 2: reaction models for blended cement. J. Mater Sci. 2007, vol. 42, no. 2, pp. 444–464.
13. Bellmann F., Stark J. Activation of blast furnace slag by a new method. Cement and Concrete Research. 2009, vol. 39, no. 8, pp. 644–650.
14. Black L., Ogirigbo O. Influence of slag composition and temperature on the hydration and microstructure of slag blended cements. Construction and Building Materials. 2016, vol. 126, no. 11, pp. 496–507.
15. Schuldyakov K.V., Kramar L.Ya., Trofimov B.Ya. The properties of slag cement and its influence on the structure of the hardened cement paste. Procedia Engineering. 2016, vol. 150, pp. 1433–1439.
16. Pribulová A., Futáš P., Baricová D. Processing and utilization of metallurgical slags. Production Engineering Archives. 2016, vol. 11, no. 2, pp. 2–5.
17. Criado M., Ke X., Provis J., Bernal S.A. Alternative inorganic binders based on alkali-activated metallurgical slags. In: Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites. 2017, pp. 185–220.
18. Trofimov B.Ya., Shuldyakov K.V. On the use of inactive blast furnace granulated slag. Arkhitektura, gradostroitel’stvo i dizain. 2015, no. 6, pp. 37–45. (In Russ.).
19. Tsakiridis P.E., Papadimitriou G.D., Tsivilis S., Koroneos C. Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials. 2008, vol. 152, no. 2, pp. 805–811.
20. Zeynep I., Prezzi Y., Prezzi M. Chemical, mineralogical and morphological properties of steel slag. Advances in Civil Engineering. 2011, vol. 2011, article ID 463638, 13 p.
21. Zhu G., HaoY., Xia C., Zhang Y., Hu T., Sun S. Study on cementitious properties of steel slag. Journal of Mining and Metallurgy B: Metallurgy. 2013, vol. 49, no. 2, pp. 217–224.
22. Navarro C., Díaz M., Villa-García M.A. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions. Environ. Sci. Technol. 2010, vol. 44, no. 14, pp. 5383–5388.
23. Khobotova E.B., Ukhan’ova M.І. Metodyka vyznachennya korysnykh vlastyvostei promyslovykh vidkhodiv z metoyu yikh utylizatsiyi v yakosti tekhnichnykh materialiv [Methods for determining useful properties of industrial wastes in regard of their disposal as technical materials]. Certificate of authorship UA no. 34221. Byulleten′ izobretenii. 2010, no. 22. (In Ukr.).
24. Radiatsionno-gigienicheskaya otsenka stroitel’nykh materialov, ispol’zuemykh v grazhdanskom stroitel’stve USSR [Radiation-hygienic assessment of building materials used in civil engineering of the Ukrainian SSR]. Kiev, 1987, 21 p. (In Russ.).
25. Bokii G.B., Porai-Koshits M.A. Rentgenostrukturnyi analiz. T. 1. [X-ray structural analysis. Vol. 1]. Мoscow: Izd-vo MGU, 1964, 492 p. (In Russ.).
26. JCPDS PDF-1 File. ICDD: The International Centre for Diffraction Data, release 1994. PA, USA. Available at URL: http://www. icdd.com. – Title screen. (Accessed: 26.06.2018).
27. Rodriguez-Carvajal J., Roisnel T. Juan Rodriguez-Carvajal. FullProf. 98 and WinPLOTR New Windows 95/NT Applications for Diffraction. Extended software/methods development: International Union of Crystallography: Newsletter. 1998, no. 20, pp. 35, 36.
28. Perepelitsyn V.A. Osnovy tekhnicheskoi mineralogii i petrografii [Fundamentals of technical mineralogy and petrography]. Мoscow: Nedra, 1987, 255 p. (In Russ.).
29. Khobotova E.B., Larin V.I., Kalmykova Yu.S., Ryazantsev A.A. Metodika rascheta massovoi doli amorfnogo sostoyaniya mine ralov otval’nykh domennykh shlakov [Methodology for calculating mass fraction of amorphous state of minerals of dump blast furnace slag]. Certificate of authorship UA no. 60123. Byulleten′ izobretenii. 2015, no. 37.
Review
For citations:
Khobotova E.B., Ignatenko M.I., Storchak O.G., Kalyuzhnaya Yu.S., Graivoronskaya I.V. MINERAL COMPOSITION OF DUMP BLAST FURNACE SLAG. Izvestiya. Ferrous Metallurgy. 2019;62(10):774-781. https://doi.org/10.17073/0368-0797-2019-10-774-781