FATIGUE PROCESS OF AUTOMOBILE MATERIALS
https://doi.org/10.17073/0368-0797-2019-9-732-738
Abstract
During operation, the structural elements of cars are exposed to temperatures and vibrations. Overwhelming majority of the destruction of metal structures is caused by their fatigue. It causes economic losses and often human casualties from accidents. Therefore, the task of ensuring the operability of parts and components of automobiles is one of the most relevant in the modern automotive industry. So it is necessary to know the patterns of behavior of metallic materials, obtained by different technologies, when they are exposed to vibration. Destruction of the metal structure directly affects the behavior of the samples deflection, reflecting the competition of two mutually opposite
phenomena – hardening and softening. It directly influences structural damageability of the metal. The article is devoted to the study of kinetics of fatigue failure of automotive materials using the calibration of structural damage to their surface with behavior of the curves of changes in current deflection under alternating loading. The paper considers automotive materials (steel grades 20KhI3, 14Kh17N2, 35KhGSА) and model metals and alloys (Copper M1, Brass L63T, aluminum alloy V95pchT2) in different structural state under cyclic loading for low, room and high temperatures with fixation of the sample deflection and structural damage corresponding to it. It is possible to study kinetics of fatigue destruction of the sample material by the deflection curves, which is an integral characteristic of destructive processes occurring under alternating loading. Using these processes, one can track the stages of damage during fatigue of metallic materials – damage to the structure at the initial stage, moment of the macroscopic crack appearance, its subsequent advancement up to complete separation of the structural material. It is probable to identify ratio of the period duration before the appearance of a fatigue crack and its subsequent growth, as well as to determine the average rate at which the fatigue crack moves through the body of the metal sample. It is important that it is also possible to estimate the kinetics of materials destruction under the conditions when direct study of the structural state of the sample surface is impossible, for example, in conditions of cryogenic and high temperatures, and also, for example, in the presence of corrosive media. In combination with fractographic and metallographic analysis of the fatigue process, the deflection curves allow, based on the evaluation of the stages of materials destruction, to carry out selection of the latter for the structural elements of a car taking into account its operating conditions and optimizing the technology of parts manufacturing to increase serviceability and maintainability.
About the Authors
G. V. PachurinRussian Federation
Dr. Sci. (Eng.), Professor of the Chair “Industrial Safety, Ecology and Chemistry”
Nizhny Novgorod
D. A. Goncharova
Russian Federation
Postgraduate of the Chair “Automobile Transport”
Nizhny Novgorod
A. A. Filippov
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Industrial Safety, Ecology and Chemistry”
Nizhny Novgorod
T. V. Nuzhdina
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Materials Science, Technology of Materials and Heat Treatment of Metals”
Nizhny Novgorod
V. B. Deev
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Foundry Technology and Art Processing of Materials”
Wuhan, China
Moscow
References
1. Ivanov Y., Alsaraeva K., Gromov V., Konovalov S., Semina O. Evolution of Al-19.4Si alloy surface structure after electron beam treatment and high cycle fatigue. Materials Science and Technology. 2015, vol. 31, no. 13a, pp. 1523–1529.
2. Pachurin G.V., Kudryavtsev S.M., Solov’ev D.V., Naumov V.I. Kuzov sovremennogo avtomobilya: materialy, proektirovanie i proizvodstvo [Body of a modern car: materials, design and production]. St. Petersburg: Izd-vo “Lan’”, 2016, 316 р. (In Russ.).
3. Ivanov Y., Alsaraeva K., Gromov V., Konovalov S., Semina O. Evolution of Al-19.4Si alloy surface structure after electron beam treatment and high cycle fatigue. Materials Science and Technology. 2015, vol. 31, no. 13a, pp. 1523–1529.
4. Konovalov S.V., Atroshkina A.A., Ivanov Yu.F., Gromov V.E. Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment. Materials Science and Engineering A. 2010, vol. 527, no. 12, pp. 3040–3043.
5. Konovalov S., Komissarova I., Ivanov Y., Gromov V., Kosinov D. Structural and phase changes under electropulse treatment of fatigue-loaded titanium alloy VT1-0. Journal of Materials Research and Technology. 2019, vol. 8, no. 1, pp. 1300–1307.
6. Konovalov S.V., Atroshkina A.A., Ivanov Yu.F., Gromov V.E. Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment. Materials Science and Engineering A. 2010, vol. 527, no. 12, pp. 3040–3043.
7. Sartor М., Wunde М., Lemke А., Roth М. etc. Coating decreases material losses by scale formation during reheating. Chernye Metally. 2016, no. 11, pp. 46–51.
8. Konovalov S., Komissarova I., Ivanov Y., Gromov V., Kosinov D. Structural and phase changes under electropulse treatment of fatigue-loaded titanium alloy VT1-0. Journal of Materials Research and Technology. 2019, vol. 8, no. 1, pp. 1300–1307.
9. Sartor М., Wunde М., Lemke А., Roth М. etc. Coating decreases material losses by scale formation during reheating. Chernye Metally. 2016, no. 11, pp. 46–51.
10. Furuya Y., Matsuoka S. The effect of modified-ausforming on gigacycle fatigue properties in Si–Mn steels. Tetsu to Hagane. J. Iron and Steel Inst. Jap. 2003, vol. 89, no. 10, pp. 1082–1089.
11. Koll’ Th., Bretschneider М., Klinkberg Т., Luter F., Мааs B. Improvement of skin pass rolling to provide better surface quality of Zn-coated steel. Chernye Metally. 2017, no. 8, pp. 44–48.
12. Furuya Y., Matsuoka S. The effect of modified-ausforming on gigacycle fatigue properties in Si–Mn steels. Tetsu to Hagane. J. Iron and Steel Inst. Jap. 2003, vol. 89, no. 10, pp. 1082–1089.
13. Lukas P., Kunz L., Navratilova L. etc. Fatigue damage of ultrafinegrain copper in very-high cycle fatigue region. Materials Science and Engineering. 2011, vol. 528, pp. 7036–7040.
14. Koll’ Th., Bretschneider М., Klinkberg Т., Luter F., Мааs B. Improvement of skin pass rolling to provide better surface quality of Zn-coated steel. Chernye Metally. 2017, no. 8, pp. 44–48.
15. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia. 2013, vol. 61, pp. 782–817.
16. Lukas P., Kunz L., Navratilova L. etc. Fatigue damage of ultrafinegrain copper in very-high cycle fatigue region. Materials Science and Engineering. 2011, vol. 528, pp. 7036–7040.
17. Pachurin G.V. Fatigue fracture at normal temperature of previously deformed alloy. Metal Science and Heat Treatment. 1990, vol. 32, no. 10, pp. 769–772.
18. Estrin Y., Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia. 2013, vol. 61, pp. 782–817.
19. Zinuti A., Saro D. Wire drawing on mills. Metizy. 2003, no. 2(03), pp. 41–47.
20. Pachurin G.V. Fatigue fracture at normal temperature of previously deformed alloy. Metal Science and Heat Treatment. 1990, vol. 32, no. 10, pp. 769–772.
21. Tomigana D., Vakimoto K., Mori T., Murakami M., Ioshimura T. The production of wire rod with high ability to remove scale. Metizy. 2008, no. 2(18), pp. 32–42.
22. Zinuti A., Saro D. Wire drawing on mills. Metizy. 2003, no. 2(03), pp. 41–47.
23. Furuya Y. Visualization of internal small fatigue crack growth. Mater. Lett. 2013, vol. 112, pp. 139–141.
24. Tomigana D., Vakimoto K., Mori T., Murakami M., Ioshimura T. The production of wire rod with high ability to remove scale. Metizy. 2008, no. 2(18), pp. 32–42.
25. Filippov A.A., Pachurin G.V., Naumov V.I., Kuzmin N.A. Low-cost treatment of rolled products used to make long high-strength bolts. Metallurgist. 2016, vol. 59, no. 9–10, pp. 810–815.
26. Furuya Y. Visualization of internal small fatigue crack growth. Mater. Lett. 2013, vol. 112, pp. 139–141.
27. Sosnovskiy L.A., Makhutov N.A., Troshchenko V.T. Evolution of ideas on fatigue of metals by volume loading and friction. Proc. of the 6th Int. Symp. on Tribofatigue (ISTF 2010), Minsk: BSU, 2010, pp. 77–84.
28. Filippov A.A., Pachurin G.V., Naumov V.I., Kuzmin N.A. Low-cost treatment of rolled products used to make long high-strength bolts. Metallurgist. 2016, vol. 59, no. 9–10, pp. 810–815.
29. Terent’ev V.F. Ustalost’ metallicheskikh materialov [Fatigue of metallic materials]. Moscow: Nauka, 2003, 254 p.
30. Sosnovskiy L.A., Makhutov N.A., Troshchenko V.T. Evolution of ideas on fatigue of metals by volume loading and friction. Proc. of the 6th Int. Symp. on Tribofatigue (ISTF 2010), Minsk: BSU, 2010, pp. 77–84.
31. Parton V.Z. Mekhanika razrusheniya: Ot teorii k praktike [Mechanics of destruction: From theory to practice]. Moscow: Nauka, 1990, 240 p.
32. Terent’ev V.F. Ustalost’ metallicheskikh materialov [Fatigue of metallic materials]. Moscow: Nauka, 2003, 254 p.
33. Hellan K. Introduction to Fracture Mechanics. New York: Mc-Graw-Hill, 1984. (Russ.ed.: Hellan K. Vvedenie v mekhaniku razrusheniya. Moscow: Mir, 1988, 364 p.).
34. Parton V.Z. Mekhanika razrusheniya: Ot teorii k praktike [Mechanics of destruction: From theory to practice]. Moscow: Nauka, 1990, 240 p.
35. Terent’ev V.F., Petukhov A.N. Ustalost’ vysokoprochnykh metallicheskikh materialov [Fatigue of high strength metallic materials]. Moscow: IMET RAN, 2013, 515 p. (In Russ.).
36. Hellan K. Introduction to Fracture Mechanics. New York: Mc-Graw-Hill, 1984. (Russ.ed.: Hellan K. Vvedenie v mekhaniku razrusheniya. Moscow: Mir, 1988, 364 p.).
37. Terent’yev V.F., Korablev S.A. Ustalost’ metallov [Metal fatigue]. Moscow: Nauka, 2015, 484 p. (In Russ.).
38. Terent’ev V.F., Petukhov A.N. Ustalost’ vysokoprochnykh metallicheskikh materialov [Fatigue of high strength metallic materials]. Moscow: IMET RAN, 2013, 515 p. (In Russ.).
39. Terent’yev V.F. Ustalostnaya prochnost’ metallov i splavov [Fatigue strength of metals and alloys]. Moscow: Intermet Inzhiniring, 2002, 288 p. (In Russ.).
40. Terent’yev V.F., Korablev S.A. Ustalost’ metallov [Metal fatigue]. Moscow: Nauka, 2015, 484 p. (In Russ.).
41. Serensen S.V., Garf M.E., Kuz’menko V.A. Dinamika mashin dlya ispytanii na ustalost’ [Dynamics of machines for fatigue testing]. Moscow: Mashinostroenie, 1967, 460 p. (In Russ.).
42. Terent’yev V.F. Ustalostnaya prochnost’ metallov i splavov [Fatigue strength of metals and alloys]. Moscow: Intermet Inzhiniring, 2002, 288 p. (In Russ.).
43. Pachurin G.V. Korrozionnaya dolgovechnost’ izdelii iz deformatsionno-uprochnennykh metallov i splavov [Corrosion durability of products from strain-hardened metals and alloys]. St. Petersburg: Izd-vo “Lan’”, 2014, 160 p. (In Russ.).
44. Serensen S.V., Garf M.E., Kuz’menko V.A. Dinamika mashin dlya ispytanii na ustalost’ [Dynamics of machines for fatigue testing]. Moscow: Mashinostroenie, 1967, 460 p. (In Russ.).
45. Pachurin G.V. Korrozionnaya dolgovechnost’ izdelii iz deformatsionno-uprochnennykh metallov i splavov [Corrosion durability of products from strain-hardened metals and alloys]. St. Petersburg: Izd-vo “Lan’”, 2014, 160 p. (In Russ.).
Review
For citations:
Pachurin G.V., Goncharova D.A., Filippov A.A., Nuzhdina T.V., Deev V.B. FATIGUE PROCESS OF AUTOMOBILE MATERIALS. Izvestiya. Ferrous Metallurgy. 2019;62(9):732-738. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-732-738