Preview

Izvestiya. Ferrous Metallurgy

Advanced search

CALCULATION OF THE THERMODYNAMIC CHARACTERISTICS OF Fe – P SYSTEM BY METHOD OF MOLECULAR DYNAMICS

https://doi.org/10.17073/0368-0797-2019-9-725-731

Abstract

The problem of dephosphorization of iron-carbon alloys is relevant for the metallurgical industry, since a high concentration of phosphorus contributes to the appearance of a number of extremely undesirable phenomena. A lot of experimental work has been devoted to solving this problem, but it has still not been completely possible to cope with it. Any field experiments aimed at studying the process of phosphorus removal, require considerable material and time costs, but at the same time do not guarantee getting the desired result. Therefore, to search for new approaches to solving this problem, it is much more rational to use numerical simulation methods involving the computational capabilities of modern computers. At present, computer experiments are the same recognized research method as theoretical research and real experiment. To study the behavior of phosphorus atoms in iron using a numerical experiment, it is necessary to build a computational model and test it by calculating various characteristics whose values are known in advance. In this paper, the method of molecular dynamics was chosen as the method of computer simulation. Using this method, one can conduct experiments with given atomic velocities and describe dynamics of the studied processes. To describe the interparticle interaction, we used the potential calculated in the framework of the immersed atom method. The study was conducted on a computational cell simulating α-iron crystal with phosphorus substitution atoms. The constructed model demonstrated satisfactory results when calculating the known characteristics of the simulated system. Dependences of changes in such characteristics as temperature coefficient of linear expansion, melting point, latent heat of melting and heat capacity on the concentration of phosphorus atoms, as well as in some cases on magnitude of the applied external pressure were established. Calculations showed that, for example, the phosphorus concentration of 0.5 % leads to an increase in the average thermal coefficient of linear expansion by 9 %, a decrease in temperature and latent heat of fusion by 5 % and a heat capacity by 7 %.

About the Authors

A. V. Markidonov
Siberian State Industrial University, Novokuznetsk Branch of the Kuzbass State Technical University named after T.F. Gorbachev, Novokuznetsk branch of Kemerovo State University
Russian Federation

Dr. Sci. (Phys.-math), Assist. Professor of the Chair of Science named after V.M. Finkel

Novokuznetsk, Kemerovo Region

 



D. A. Lubyanoi
Novokuznetsk Branch of the Kuzbass State Technical University named after T.F. Gorbachev
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair of Economics and Management

Novokuznetsk, Kemerovo Region



V. V. Kovalenko
Siberian State Industrial University
Russian Federation

Dr. Sci. (Phys.-math), Professor of the Chair of Science named after V.M. Finkel

Novokuznetsk, Kemerovo Region



M. D. Starostenkov
Altai State Technical University
Russian Federation

Dr. Sci. (Phys.-math.), Professor, Head of the Chair of Physics

Barnaul, Altai Territory



References

1. Robei R., Uaitkhed M. Ladle treatment of pig iron at specific production conditions. MRT. Metallurgicheskoe proizvodstvo i tekhnologiya metallurgicheskikh protsessov. 2014, no. 1, pp. 16–24. (In Russ.).

2. Dawood A.D., Semin A.E., Kotel’nikov G.I., Shchukina L.E.. Dephosphorization of high-chromium steels by using rare earth oxides. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 1, pp. 54–59. (In Russ.).

3. Georgadze A.G., Gerner V.I., Elashvili M.I., Nikiforov P.A., Pletnev A.N., Smirnov S.A. Conditions for dephosphorization of liquid metal in a casting ladle. Lit’e i metallurgiya. 2012, vol. 67, no. 3, pp. 117–119. (In Russ.).

4. Robei R., Uaitkhed M. Ladle treatment of pig iron at specific production conditions. MRT. Metallurgicheskoe proizvodstvo i tekhnologiya metallurgicheskikh protsessov. 2014, no. 1, pp. 16–24. (In Russ.).

5. Starostenkov M.D., Potekaev A.I., Grinkevich L.S., Kulagina V.V., Markidonov A.V. Dynamics of edge dislocations in a low-stability fcc-system irradiated by high-energy particles. Russian Physics Journal. 2017, vol. 59, no. 9, pp. 1446–1453.

6. Georgadze A.G., Gerner V.I., Elashvili M.I., Nikiforov P.A., Pletnev A.N., Smirnov S.A. Conditions for dephosphorization of liquid metal in a casting ladle. Lit’e i metallurgiya. 2012, vol. 67, no. 3, pp. 117–119. (In Russ.).

7. Markidonov A.V., Starostenkov M.D., Smirnova M.V. Self-diffusion process in an FCC crystal caused by the passage of a shock wave. Russian Physics Journal. 2015, vol. 58, no. 6, pp. 828–832.

8. Starostenkov M.D., Potekaev A.I., Grinkevich L.S., Kulagina V.V., Markidonov A.V. Dynamics of edge dislocations in a low-stability fcc-system irradiated by high-energy particles. Russian Physics Journal. 2017, vol. 59, no. 9, pp. 1446–1453.

9. Markidonov A.V., Starostenkov M.D., Poletaev G.M. Transformation of nanopores in gold under conditions of thermoactivation and the effects of acoustic and shock waves. Bulletin of the Russian Academy of Sciences: Physics. 2015, vol. 79, no. 9, pp. 1089–1092.

10. Markidonov A.V., Starostenkov M.D., Smirnova M.V. Self-diffusion process in an FCC crystal caused by the passage of a shock wave. Russian Physics Journal. 2015, vol. 58, no. 6, pp. 828–832.

11. Markidonov A.V., Starostenkov M.D., Tabakov P.Y. Splitting vacancy voids in the grain boundary region by a post-cascade shock wave. Materials Physics and Mechanics. 2013, vol. 18, no. 2, pp. 148–155.

12. Markidonov A.V., Starostenkov M.D., Poletaev G.M. Transformation of nanopores in gold under conditions of thermoactivation and the effects of acoustic and shock waves. Bulletin of the Russian Academy of Sciences: Physics. 2015, vol. 79, no. 9, pp. 1089–1092.

13. Andersen H.C. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics. 1980, vol. 72, no. 4, pp. 2384–2393.

14. Markidonov A.V., Starostenkov M.D., Tabakov P.Y. Splitting vacancy voids in the grain boundary region by a post-cascade shock wave. Materials Physics and Mechanics. 2013, vol. 18, no. 2, pp. 148–155.

15. Daw M. S., Baskes M.I. Embedded-atom method: Derivation and application to impurities and other defects in metals. Physical Review B. 1984, vol. 29, no. 12, pp. 6443–6453.

16. Andersen H.C. Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics. 1980, vol. 72, no. 4, pp. 2384–2393.

17. Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B. 1986, vol. 33, no. 12, pp. 7983–7991.

18. Daw M. S., Baskes M.I. Embedded-atom method: Derivation and application to impurities and other defects in metals. Physical Review B. 1984, vol. 29, no. 12, pp. 6443–6453.

19. Biersack J.P., Ziegler J.F. Refined universal potentials in atomic collisions. Nuclear Instruments and Methods. 1982, vol. 194, pp. 93–100.

20. Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B. 1986, vol. 33, no. 12, pp. 7983–7991.

21. Ackland G.J., Mendelev M.I., Srolovitz D.J., Han S., Barashev A.V. Development of an interatomic potential for phosphorus impurities in α-iron. Journal of Physics: Condensed Matter. 2004, vol. 16, pp. 2629–2642.

22. Biersack J.P., Ziegler J.F. Refined universal potentials in atomic collisions. Nuclear Instruments and Methods. 1982, vol. 194, pp. 93–100.

23. Ko W.-S., Kim N.-J., Lee B.-J. Atomistic modeling of an impurity element and a metal–impurity system: pure P and Fe–P system. Journal of Physics: Condensed Matter. 2012, vol. 14, pp. 225002–225016.

24. Ackland G.J., Mendelev M.I., Srolovitz D.J., Han S., Barashev A.V. Development of an interatomic potential for phosphorus impurities in α-iron. Journal of Physics: Condensed Matter. 2004, vol. 16, pp. 2629–2642.

25. Grigor’ev I.S., Meilikhov E.Z. Fizicheskie velichiny: spravochnik [Physical quantities: Reference book]. Moscow: Energoatomizdat, 1991, 1232 p. (In Russ.).

26. Ko W.-S., Kim N.-J., Lee B.-J. Atomistic modeling of an impurity element and a metal–impurity system: pure P and Fe–P system. Journal of Physics: Condensed Matter. 2012, vol. 14, pp. 225002–225016.

27. Belonoshko A.B., Skorodumova N.V., Rosengren A., Johansson B. Melting and critical superheating. Physical Review B. 2006, vol. 73, pp. 0122011–0122013.

28. Grigor’ev I.S., Meilikhov E.Z. Fizicheskie velichiny: spravochnik [Physical quantities: Reference book]. Moscow: Energoatomizdat, 1991, 1232 p. (In Russ.).

29. Mazhukin V.I., Shapranov A.V., Perezhigin V.E., Koroleva O.N., Mazhukin A.V. Kinetic melting and crystallization stages of strong-superheated and supercooled metals. Mathematical Models and Computer Simulations. 2017, vol. 9, no. 4, pp. 448–456.

30. Belonoshko A.B., Skorodumova N.V., Rosengren A., Johansson B. Melting and critical superheating. Physical Review B. 2006, vol. 73, pp. 0122011–0122013.

31. Yang H., Lu Y., Chen M., Guo Z. A molecular dynamics study on melting point and specific heat of Ni3Al alloy. Science in China. Series G: Physics, Mechanics & Astronomy. 2007, vol. 50, no. 4, pp. 407–413.

32. Mazhukin V.I., Shapranov A.V., Perezhigin V.E., Koroleva O.N., Mazhukin A.V. Kinetic melting and crystallization stages of strong-superheated and supercooled metals. Mathematical Models and Computer Simulations. 2017, vol. 9, no. 4, pp. 448–456.

33. Tablitsa fizicheskikh velichin: spravochnik [Table of physical quantities: Reference book]. Kikoin I.K. ed. Moscow: Atomizdat, 1976, 1008 p. (In Russ.).

34. Yang H., Lu Y., Chen M., Guo Z. A molecular dynamics study on melting point and specific heat of Ni3Al alloy. Science in China. Series G: Physics, Mechanics & Astronomy. 2007, vol. 50, no. 4, pp. 407–413.

35. Zaitsev I.D., Zozulya A.F., Aseev G.G. Mashinnyi raschet fizikokhimicheskikh parametrov neorganicheskikh veshchestv [Machine calculation of physico-chemical parameters of inorganic substances]. Moscow: Khimiya, 1983, 256 p. (In Russ.).

36. Tablitsa fizicheskikh velichin: spravochnik [Table of physical quantities: Reference book]. Kikoin I.K. ed. Moscow: Atomizdat, 1976, 1008 p. (In Russ.).

37. Zinov’ev V.E. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh: spravochnik [Thermophysical properties of metals at high temperatures: Reference book]. Moscow: Metallurgiya, 1989, 384 p. (In Russ.).

38. Zaitsev I.D., Zozulya A.F., Aseev G.G. Mashinnyi raschet fizikokhimicheskikh parametrov neorganicheskikh veshchestv [Machine calculation of physico-chemical parameters of inorganic substances]. Moscow: Khimiya, 1983, 256 p. (In Russ.).

39. Zinov’ev V.E. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh: spravochnik [Thermophysical properties of metals at high temperatures: Reference book]. Moscow: Metallurgiya, 1989, 384 p. (In Russ.).


Review

For citations:


Markidonov A.V., Lubyanoi D.A., Kovalenko V.V., Starostenkov M.D. CALCULATION OF THE THERMODYNAMIC CHARACTERISTICS OF Fe – P SYSTEM BY METHOD OF MOLECULAR DYNAMICS. Izvestiya. Ferrous Metallurgy. 2019;62(9):725-731. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-725-731

Views: 2678


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)