MOLECULAR DYNAMIC SIMULATION OF THE MELT OF OXIDE-FLUORIDE INDUSTRIAL SLAG-FORMING MIXTURE
https://doi.org/10.17073/0368-0797-2019-9-719-724
Abstract
The paper discusses the results of molecular dynamic simulation of a melt of the multicomponent oxide-fluoride system CaO – SiO2 – – Al2O3 – MgO – Na2O – K2O – CaF2 – FeO, corresponding to composition of industrial slag-forming mixture (SFM) used in steel casting for slag targeting in the mold of a continuous casting machine (in wt %: 35.35 % SiO2 , 30.79 % CaO, 8.58 % Al2O3 , 1.26 % MgO, 13.73 % CaF2 , 7.57 % Na2O, 0.88 % K2O, and 1.82 % FeO). These concentrations were converted to mole fractions, and the number of ions was calculated for each of the components in the model. An eightcomponent oxide-fluoride melt containing 2003 ions in the main cube with a side length of 31.01 Å was simulated under periodic boundary conditions at an experimentally determined solidification onset temperature of 1257 K at constant volume. Coulomb interaction was taken into account by the Ewald–Hansen method. The time step was 0.05t0, where t0 = 7,608·10–14 s is the internal unit of time. The melt density was taken to be 3.04 g/cm3 based on our experimental data. The interparticle interaction potentials were chosen in the Born–Mayer form. Based on the simulation results, the structure of subcrystalline groups of atoms present in the melt at the temperature of solidification onset was determined. A discussion of the simulation results and their comparison with the literature data was held. It is shown that the computer model allows one to obtain a fairly realistic picture of atomic structure of the slag melt, indicating that the main structural component of all silicate systems is silicon-oxygen tetrahedron. Tetrahedra in silicates are either in the form of structural units isolated from each other, or, connecting together through peaks, they form complex anions. It is consistent with the theory of slag melts. Molecular-dynamic simulation allows one to obtain adequate information on structure of the melt of a certain chemical composition.
About the Authors
B. R. Gel’chinskiiRussian Federation
Dr. Sci. (Phys.–Math.), Professor, Head of the Laboratory of Powder, Composite and Nanomaterials
Ekaterinburg
E. V. Dyul’dina
Russian Federation
Cand. Sci. (Eng.), Assist. Professor, Professor of the Chair “Metallurgy and Chemical Engineering”
Magnitogorsk, Chelyabinsk Region
L. I. Leont’ev
Russian Federation
Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences
Ekaterinburg
Moscow
References
1. Suvorov S.A., Vikhrov E. A. Improvement of slag-forming mixtures for continuous-casting machine molds. Steel in Translation. 2010, vol. 40, no. 4, pp. 341–346.
2. Filippov A.V., Didovich S.V., Selivanov V.N. Slag formation in the mold of slab CCM. Problemy chernoi metallurgii i materialovedeniya. 2013, no. 4, pp. 40–42. (In Russ.).
3. Dyul’dina E.V., Selivanov V.N., Lozovskoi E.P., Korotin A.V. Investigation of slag formation in the tundish of continuous caster. Izvestiya. Ferrous Metallurgy. 2013, no. 5, pp. 7–11. (In Russ.).
4. Makurov S.L., Smirnov A.N., Epishev M.V., Shlemko S.V. The study and optimization of technological properties of slag-forming mixtures for steel high-speed continuous casting. Izvestiya. Ferrous Metallurgy. 2010, no. 12, pp. 13–16. (In Russ.).
5. Suvorov S.A., Ordin V.G., Eroshkin S.B., Vikhrov E.A. Solidification properties in the selection of slag-forming mixtures for continuous-cast steel of different grades. Steel in Translation. 2010, vol. 40, no. 12, pp. 1070–1076.
6. Ekkhardt D., Bekhmann D. Selection of slag-forming mixtures for continuous casting of steel. Stal’. 2008, no. 11, pp. 19–22. (In Russ.).
7. Zhou Lejun, Wang Wanlin, Wei Juan, Lu Boxun. Effect of Na2O and B2O3 on heat transfer behavior of low fluorine mold flux for casting medium carbon steels. ISIJ International. 2013, vol. 53, no. 4, pp. 665–672.
8. Suvorov S.A., Vikhrov E. A. Improvement of slag-forming mixtures for continuous-casting machine molds. Steel in Translation. 2010, vol. 40, no. 4, pp. 341–346.
9. Wen Guang Hua, Zhu Xin Bai, Tang Ping, Yang Bo, Yu Xiong. Influence of raw material type on heat transfer and structure of mold slag. ISIJ International. 2011, vol. 51, no. 7, pp. 1028–1032.
10. Dyul’dina E.V., Selivanov V.N., Lozovskoi E.P., Korotin A.V. Investigation of slag formation in the tundish of continuous caster. Izvestiya. Ferrous Metallurgy. 2013, no. 5, pp. 7–11. (In Russ.).
11. Takahira N., Hanao M., Tsukaguchi Y. Viscosity and solidification temperature of SiO2–CaO–Na2O melts for fluorine free mould flux. ISIJ International. 2013, vol. 53, no. 5, pp. 818–822.
12. Suvorov S.A., Ordin V.G., Eroshkin S.B., Vikhrov E.A. Solidification properties in the selection of slag-forming mixtures for continuous-cast steel of different grades. Steel in Translation. 2010, vol. 40, no. 12, pp. 1070–1076.
13. Hanao M. Influence of basicity of mold flux on its crystallization rate. ISIJ International. 2013, vol. 53, no. 4, pp. 648–654.
14. Zhou Lejun, Wang Wanlin, Wei Juan, Lu Boxun. Effect of Na2O and B2O3 on heat transfer behavior of low fluorine mold flux for casting medium carbon steels. ISIJ International. 2013, vol. 53, no. 4, pp. 665–672.
15. Belashchenko D.K. Komp’yuternoe modelirovanie zhidkikh i amorfnykh veshchestv [Computer simulation of liquid and amorphous substances]. Moscow: MISIS, 2005, 408 p. (In Russ.).
16. Wen Guang Hua, Zhu Xin Bai, Tang Ping, Yang Bo, Yu Xiong. Influence of raw material type on heat transfer and structure of mold slag. ISIJ International. 2011, vol. 51, no. 7, pp. 1028–1032.
17. Dyul’dina E.V., Selivanov V.N., Lozovskii E.P., Istomin S.A., Ryabov V.V., Chentsov V.P. Physico-chemical properties of melts of slag-forming mixtures used in continuous casting of steel. Rasplavy. 2009, no. 6, pp. 3–10. (In Russ.).
18. Takahira N., Hanao M., Tsukaguchi Y. Viscosity and solidification temperature of SiO2–CaO–Na2O melts for fluorine free mould flux. ISIJ International. 2013, vol. 53, no. 5, pp. 818–822.
19. Belashchenko D.K., Sapozhnikova S.Yu. Computer simulation of the structure and thermodynamic properties of cryolite-alumina melts and the mechanism of ion transfer. Zhurnal Fizicheskoi Khimii. 1997, vol. 71, no. 6, pp. 1036–1040. (In Russ.).
20. Hanao M. Influence of basicity of mold flux on its crystallization rate. ISIJ International. 2013, vol. 53, no. 4, pp. 648–654.
21. Pastukhov E.A., Vatolin N.A., Lisin V.L. etc. Difraktsionnye issledovaniya stroeniya vysokotemperaturnykh rasplavov [Diffraction studies of the structure of high-temperature melts]. Ekaterinburg: UrO RAN, 2003, 355 p. (In Russ.).
22. Belashchenko D.K. Komp’yuternoe modelirovanie zhidkikh i amorfnykh veshchestv [Computer simulation of liquid and amorphous substances]. Moscow: MISIS, 2005, 408 p. (In Russ.).
23. Deer W.A., Howie R.A., Zussman J. Rock-Forming Minerals. Vol. 2: Chain silicates. Longmans Green and Co, 1963, 379 p.
24. Dyul’dina E.V., Selivanov V.N., Lozovskii E.P., Istomin S.A., Ryabov V.V., Chentsov V.P. Physico-chemical properties of melts of slag-forming mixtures used in continuous casting of steel. Rasplavy. 2009, no. 6, pp. 3–10. (In Russ.).
25. Gol’dshtein N.L. Kratkii kurs teorii metallurgicheskikh protsessov [A short course in the theory of metallurgical processes]. Sverdlovsk: Metallurgizdat, 1961, 334 p. (In Russ.).
26. Belashchenko D.K., Sapozhnikova S.Yu. Computer simulation of the structure and thermodynamic properties of cryolite-alumina melts and the mechanism of ion transfer. Zhurnal Fizicheskoi Khimii. 1997, vol. 71, no. 6, pp. 1036–1040. (In Russ.).
27. Esin O.A., Gel’d P.V. Fizicheskaya khimiya pirometallurgicheskikh protsessov: ch. 2 [Physical chemistry of pyrometallurgical processes: Part.2]. Moscow: Metallurgiya, 1966, 702 p. (In Russ.).
28. Pastukhov E.A., Vatolin N.A., Lisin V.L. etc. Difraktsionnye issledovaniya stroeniya vysokotemperaturnykh rasplavov [Diffraction studies of the structure of high-temperature melts]. Ekaterinburg: UrO RAN, 2003, 355 p. (In Russ.).
29. Masson C.R., Smith I.B., Whiteway S.G. Molecular size distribution in multichain polymers: application of polymer theory to silicate melts. Can J. Chem. 1970, vol. 48, pp. 1456–1464.
30. Deer W.A., Howie R.A., Zussman J. Rock-Forming Minerals. Vol. 2: Chain silicates. Longmans Green and Co, 1963, 379 p.
31. Gaskel D.R. Activities and free energies of mixing in binary silicate melts. Met. Trans. 1977, vol. 8B, no. 1, pp. 131–145.
32. Gol’dshtein N.L. Kratkii kurs teorii metallurgicheskikh protsessov [A short course in the theory of metallurgical processes]. Sverdlovsk: Metallurgizdat, 1961, 334 p. (In Russ.).
33. Elfsberg J., Matsushita T. Measurements and calculation of interfacial tension between commercial steels and mould flux slags. Steel Research International. 2011, vol. 82, no. 4, pp. 404–414.
34. Esin O.A., Gel’d P.V. Fizicheskaya khimiya pirometallurgicheskikh protsessov: ch. 2 [Physical chemistry of pyrometallurgical processes: Part.2]. Moscow: Metallurgiya, 1966, 702 p. (In Russ.).
35. Singh D., Bhardwaj P., Yang Y.D., McLean A., Hasegawa M., Iwase M. The influence of carbonaceous material on the melting behaviour of mould powder. Steel Research International. 2010, vol. 81, no. 11, pp. 974–979.
36. Masson C.R., Smith I.B., Whiteway S.G. Molecular size distribution in multichain polymers: application of polymer theory to silicate melts. Can J. Chem. 1970, vol. 48, pp. 1456–1464.
37. Gaskel D.R. Activities and free energies of mixing in binary silicate melts. Met. Trans. 1977, vol. 8B, no. 1, pp. 131–145.
38. Elfsberg J., Matsushita T. Measurements and calculation of interfacial tension between commercial steels and mould flux slags. Steel Research International. 2011, vol. 82, no. 4, pp. 404–414.
39. Singh D., Bhardwaj P., Yang Y.D., McLean A., Hasegawa M., Iwase M. The influence of carbonaceous material on the melting behaviour of mould powder. Steel Research International. 2010, vol. 81, no. 11, pp. 974–979.
Review
For citations:
Gel’chinskii B.R., Dyul’dina E.V., Leont’ev L.I. MOLECULAR DYNAMIC SIMULATION OF THE MELT OF OXIDE-FLUORIDE INDUSTRIAL SLAG-FORMING MIXTURE. Izvestiya. Ferrous Metallurgy. 2019;62(9):719-724. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-719-724