USE OF EXPANDER-GENERATOR UNIT AT CHP OF METALLURGICAL PLANT FOR PRODUCING ELECTRIC POWER AND INCREASING EFFICIENCY OF COMPRESSOR
https://doi.org/10.17073/0368-0797-2019-9-698-704
Abstract
The ability of saving energy in the production of compressed air is one of the most energy-consuming production in which much of the used energy is lost. The proposed technical solution is based on the united use of two energy-saving technologies. The first of them is the use of technological pressure drop of transported natural gas which lost irrevocably when it is throttled at gas control stations. The second one is air cooling before the compressor sections to reduce compression work. A scheme of a combined steam blowing and heat power plant of a metal manufacturer is proposed. In addition to a power and heat generating turbine and a two-section air compressor with a steamturbine drive, a two-stage expander-generator unit (EGU) producing electricity and cold is used. The thermodynamics of gas expansion processes in the expander is considered, the choice of a two-stage scheme is founded. The cold produced in the EGU is used to lower the air temperature at the inlet to the first and second sections of the compressor, thus reducing fuel consumption for air compression. Using the proposed scheme allows to reduce fuel consumption to the compressor drive, to use the heat of compressed air to preheat the transported gas before the steps of the expander and to generate additional electric power. At the same time, fuel is not used to generate electricity, and the heat of the cooled air is not discharged into the environment, therefore the plant operation is characterized by high environmental performance. The procedure for calculating of fuel economy when using the proposed scheme is given. The assessment has shown that the use of this scheme allows, under given conditions of calculation, to reduce fuel consumption at the combined heat power and steam blowing plant by 11.2 thousand tons of fuel equivalent per year, which is 0.84 %. The generated electric power of the EGU will be 5.3 MW.
Keywords
About the Authors
A. V. KlimenkoRussian Federation
Academician of the Russian Academy of Sciences, Dr. Sci. (Eng.), Chief Researcher
V. S. Agababov
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair of Thermal Power Plants
A. V. Koryagin
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Heat and Mass Transfer Processes and Units
S. N. Petin
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Energetics of High-Temperature Technology
P. N. Borisova
Russian Federation
Postgraduate of the Chair of Thermal Power Plants
References
1. Godovoi Otchet MMK za 2015 g [Annual report of MMK for 2015]. Electronic resource. Available at URL: http://mmk.ru/upload/iblock/5a2/1%20%D0%93%D0%9E%202015.pdf (In Russ.).
2. Nikiforov G.V., Oleinikov V.K., Zaslavets B.I. Energosberezhenie i upravlenie v metallurgicheskom proizvodstve [Energy saving and management in metallurgical industry]. Moscow: Energoatomizdat, 2003, 480 p. (In Russ.).
3. Promyshlennaya teploenergetika i teplotekhnika: Spravochnik v 4 t. T. 4 [Industrial heat and power engineering: Handbook in 4 Vols. Vol. 4]. Klimenko A.V., Zorina V.M. eds. Moscow: Izdatel’stvo MEI, 2007, 632 p. (In Russ.).
4. Demin Yu.K., Khasanova R.V., Neshporenko E.G., Kartavtsev S.V. Improvement of intermediate cooling scheme of compressed gas in industrial gas supply system at a metallurgical enterprise. Elektrotekhnicheskie sistemy i kompleksy. 2017, no. 1, pp. 37–43. (In Russ.).
5. Cronin P. The Application of Turboexpanders for Energy Conservation. Company materials. Rotoflow Corporation, USA, 1999.
6. Agababov V.S., Koryagin A.V., Dzhuraeva E.V. Electricity production in expander-generator units with simultaneous release of heat of different temperature levels (heat and cold). In: Ratsional’noe ispol’zovanie prirodnogo gaza v metallurgii: Sb. tez. mezhd. nauch.-praktich. konf. Moskva, 13-14 noyabrya 2003 g. [Rational Use of Natural Gas in Metallurgy: Abstracts of the Int. Sci.-Pract. Conf., November 13-14, 2003, Moscow]. Moscow: MISIS, 2003, pp. 45–46. (In Russ.).
7. Berge W., Zahner C. Erdgas-Entspannungsturbine Goeppingen. Gas und Wasserfach Gas Erdgas. 1991, vol. 132, no. 7, pp. 302–304. (In Germ.).
8. Bosen W. Auslegung und Regelung von Erdgasexpansionsturbinen. In: VDI Berichte. Vol. 1141. Düesseldorf: VDI-Verlag GmBH, 1994, pp. 113–124. (In Germ.).
9. Baikov I.R., Molchanova I.R., Gataullina A.R. Energotechnological complex on the basis of expander-generator units at compressor station. Territoriya “NEFTEGAZ”. 2015, no. 6, pp. 114–118. (In Russ.).
10. He T.B., Ju Y.L. Design and optimization of natural gas liquefaction process by utilizing gas pipeline pressure energy. Applied Thermal Engineering. 2013, vol. 57, no. 1-2, pp. 1–6.
11. Arabkoohsar A., Gharahchomaghloo Z., Farzaneh-Gord M., Koury R.N.N., Deymi-Dashtebayaz M. An energetic and economic analysis of power productive gas expansion stations for employing combined heat and power. Energy. 2017, vol. 133, pp. 737–748.
12. Agababov V.S., Stepanez A.A., Heymer J.J. Der Einsatz von Wärmepumpen zur Erdgasvorwärmung. Gas und Wasserfach Gas Erdgas. 2000, vol. 141, no. 3, pp. 182–184. (In Germ.).
13. Agababov V.S, Korjagin A.V., Utenkov V.F., Heymer J.J. Abhaengichkeit der Betriebsdaten einer Waermepumpenanlage zur Erdgasvorwaermung von den Einsatzparametern. Gas und Wasserfach Gas Erdgas. 2000, vol. 141, no. 9, pp. 610–615. (In Germ.).
14. Furchner H. Stromerzeugung durch Erdgasentspannung. Einfuerunghemmnisse und technische Loesungen. Gas und Wasserfach Gas Erdgas. 1997, vol. 138, no. 11, pp. 634–636. (In Germ.).
15. Hagedorn G. Technische Moeglichkeiten und Anwendungspotentiale fuer den Einsatz von Entspannungsmaschinen in der Versorgungswirtschaft und Industrie. In: VDI Berichte. Vol. 1141. Düsseldorf: VDI-Verlag GmBH, 1994, pp. 1–15. (In Germ.).
16. Modrei P., Sundermann H.-H. Planung, Bau und erste Betriebserfahrungen einer Erdgas – Expansionsanlage in Ferngassystemen. Gas und Wasserfach Gas Erdgas. 1998, vol. 139, no. 5, pp. 276–282. (In Germ.).
17. STO Gazprom 2-3/5-501-2006. Normy tekhnologicheskogo proektirovaniya magistral’nykh gazoprovodov [STO Gazprom 2-3/5-501-2006. Standards of technological design of gas pipelines]. (In Russ.).
18. Kirillin V.A., Sychev V.V., Sheindlin A.E. Tekhnicheskaya termodinamika [Technical thermodynamics]. Moscow: Energiya, 2016, 496 p. (In Russ.).
19. Koryagin A.V., Dzhuraeva E.V. Raschet detander-generatornykh agregatov i ozhizhitelei prirodnogo gaza [Calculation of expandergenerating units and liquefiers of natural gas]. Certificate of state registration of computer program no. 2001611044. 1 p. (In Russ.).
20. Gurov V.I. Prospects for the use of turboexpanders in gas supply system. Gazoturbinnye tekhnologii. 2002, vol. 20, no. 5, pp. 34–37. (In Russ.).
Review
For citations:
Klimenko A.V., Agababov V.S., Koryagin A.V., Petin S.N., Borisova P.N. USE OF EXPANDER-GENERATOR UNIT AT CHP OF METALLURGICAL PLANT FOR PRODUCING ELECTRIC POWER AND INCREASING EFFICIENCY OF COMPRESSOR. Izvestiya. Ferrous Metallurgy. 2019;62(9):698-704. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-698-704