Thermodynamics of oxygen solutions in manganese-containing Ni – Co melts
https://doi.org/10.17073/0368-0797-2019-6-475-483
Abstract
Nickel-cobalt alloys are widely used in modern technology. Manganese is one of the alloying components in these alloys. Oxygen is a harmful impurity in Ni – Co alloys; it presents in the metal in dissolved form or in the form of oxide nonmetallic inclusions. The presence of oxygen in these alloys degrades their service properties. The study of oxygen solution thermodynamics in manganese-containing Ni – Co melts is of considerable interest for the practice of such alloys production. Thermodynamic analysis of oxygen solutions in manganese-containing Ni – Co melts has been carried out. The equilibrium constant of interaction of manganese and oxygen dissolved in the nickel-cobalt melts, the activity coefficients at infinite dilution, and the interaction parameters characterizing these solutions were determined for melts of different composition. In the interaction of manganese with oxygen in Ni – Co melts, the oxide phase, in addition to MnO, contains NiO and CoO. The values of the mole fractions of MnO, NiO and CoO in the oxide phase were calculated at 1873 K for different manganese concentrations in Ni – Co melts. In the case of nickel melt, even when manganese content is higher than 0.1 %, the mole fraction of manganese oxide is close to unity. As the cobalt content in the melt increases, the mole fraction of manganese oxide in the oxide phase decreases. In the case of pure cobalt, it is close to unity with manganese contents above 0.7 %. The dependences of the oxygen solubility on contents of cobalt and manganese in the studied melts were calculated. In nickel-cobalt melts, manganese is characterized by a high affinity for oxygen. The deoxidizing ability of manganese decreases with increasing cobalt content in the melt. In pure cobalt it is significantly lower than in pure nickel. The oxygen solubility curves in manganese-containing Ni – Co melts pass through a minimum, the position of which shifts to the higher manganese content with an increase in cobalt content in the melt.
Keywords
About the Authors
V. Ya. DashevskiiRussian Federation
Dr. Sci. (Eng.), Professor of the Chair “Energy-Efficient and Resource-Saving Industrial Technologies”, Head of the Laboratory
Moscow
A. A. Alexandrov
Russian Federation
Cand. Sci.(Eng.), Senior Researcher
Moscow
L. I. Leont’ev
Russian Federation
Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher
Moscow; Ekaterinburg
References
1. Lomberg B.S. Alloys for gas turbine disk engines (GTE). In: Mashinostroenie: Entsiklopediya. T. II-3. Tsvetnye materialy i splavy. Kompozitsionnye metallicheskie materialy [Mechanical engineering: Encyclopedia. Vol. II-3. Non-ferrous materials and alloys. Composite metal materials]. Moscow: Mashinostroenie, 2001, pp. 553–562. (In Russ.).
2. Garibov G.S., Vostrikov A.V., Grits N.M., Fedorenko E.A., Kazberovich A.M., Inozemtsev A.A., Andreichenko I.L., Karyagin D.A. Zharoprochnyi poroshkovyi nikelevyi splav [Heat resistant powder nickel alloy]. Patent RF 2371495. Byulletenʹ izobretenii. 2009, no. 30. (In Russ.).
3. Garibov G.S., Grits N.M., Inozemtsev A.A., Vostrikov A.V., Fedorenko E.A., Andreichenko I.L., Zubarev G.I., Karyagin D.A. Zharoprochnyi poroshkovyi splav na osnove nikelya [Heat resistant powder nickel alloy]. Patent RF 2410457. Byulletenʹ izobretenii. 2011, no. 3. (In Russ.).
4. Logunov A.V., Shmotin Yu.N. Sovremennye zharoprochnye nikelevye splavy dlya diskov gazovykh turbin (materialy i tekhnologii) [Modern heat-resistant nickel alloys for gas turbine disks (materials and technologies)]. Moscow: Nauka i tekhnologii, 2013, 264 p. (In Russ.).
5. Sigworth G.K., Elliott J.F., Vaughn G., Geiger G.H. The thermodynamics of dilute liquid nickel alloys. Canadian Metallurgical Quarterly (The Canadian Journal of Metallurgy and Materials Science). 1977, vol. 16-17, no. 1, pp. 104–110.
6. Sigworth G.K., Elliott J.F. The thermodynamics of dilute liquid cobalt alloys. Canadian Metallurgical quarterly. 1976, vol. 15, no 2, pp. 123–127.
7. Kulikov I.S. Raskislenie metallov [Metals steel deoxidation]. Moscow: Metallurgiya, 1975, 504 p. (In Russ.).
8. Data from FToxid – FACT oxide databases; NiO – MnO, 1 atm. Electronic resource. Available at URL: http://www.crct.polymtl.ca/fact/ phase_diagram.php?file=Mn-Ni-O_MnO-NiO.jpg&dir=FToxid (Accessed: 30.01.2019).
9. Dashevskii V.Ya., Katsnelson A.M., Makarova N.N., Grigorovitch K.V., Kashin V.I. Deoxidation equilibrium of manganese and silicon in liquid iron-nickel alloy. ISIJ International. 2003, vol. 43, no. 10, pp. 1487–1494.
10. Belyanchikov L.N. A universal method of recalculating the parameters values of the elements interaction from one alloy base to another according to the theory of quasi-regular solutions. Part II. Estimation of the parameters of elements interaction in nickel alloys. Elektrometallurgiya. 2009, no. 2, pp. 29–38. (In Russ.).
11. Belyanchikov L.N. Estimation of interaction parameters, activity coefficients and dissolution heats of elements in cobalt-based alloys by recalculating their values in iron alloys. Elektrometallurgiya. 2009, no. 4, pp. 16–22. (In Russ.).
12. Frohberg M.G., Wang M. Thermodynamic properties of sulphur in liquid copper-antimony alloys at 1473 K. Z. Metallkd. 1990, vol. 81, no. 7, pp. 513–518.
13. Aleksandrov A.A., Dashevskii V.Ya. Thermodynamics of the oxygen solutions in chromium-containing Ni–Co melts. Russian Metallurgy (Metally). 2016, vol. 2016, no. 7, pp. 642–648.
14. Ishii F., Ban-ya S. Deoxidation equilibrium of silicon in liquid nickel-copper and nickel-cobalt alloys. ISIJ International. 1993, vol. 33, no. 2, pp. 245–250.
15. Turkdogan E.T. Review paper: deoxidation of steel. In: Chemical Metallurgy of Iron and Steel, Symposium 1971. London: ISI, 1973, pp. 153–170.
16. Steelmaking Data Sourcebook. N.Y.-Tokyo: Gordon & Breach Science Publ., 1988, 325 p.
17. Aleksandrov A.A., Dashevskii V.Ya. Thermodynamics of the oxygen solutions in manganese-containing Fe–Co melts. Russian Metallurgy (Metally). 2014, vol. 2014, no. 1, pp. 1–7.
18. Hultgren R., Desai P.D., Hawkins D.T., Gleiser M., Kelley K.K. Selected values of the thermodynamic properties of binary alloys. Ohio: Metals Park, Amer. Soc. Metals, 1973, 1435 p.
19. Dashevskii V.Ya., Aleksandrov A.A., Leont’ev L.I. Thermodynamics of oxygen solutions at complex deoxidation of the Fe–Co melts. Izvestiya. Ferrous Metallurgy. 2014, vol. 57, no. 5, pp. 33–41. (In Russ.).
Review
For citations:
Dashevskii V.Ya., Alexandrov A.A., Leont’ev L.I. Thermodynamics of oxygen solutions in manganese-containing Ni – Co melts. Izvestiya. Ferrous Metallurgy. 2019;62(6):475-483. (In Russ.) https://doi.org/10.17073/0368-0797-2019-6-475-483