Preview

Izvestiya. Ferrous Metallurgy

Advanced search

APPLICATION OF STRESS WAVES EMISSION FOR DETERMINATION OF FATIGUE CHARACTERISTICS OF MATERIAL

https://doi.org/10.17073/0368-0797-2019-2-141-147

Abstract

Results of experimental evaluation of the fatigue characteristics of tested samples material are considered based on emission of stress waves. Using previously published data on synergistically organized acoustic emission, an experiment was prepared and performed. In experiments on different materials, possibility of using acoustic emission signal for operative determination of mechanical characteristics and, above all, the limit of endurance were demonstrated. Samples for strength testing of materials were made of five steel grades and one grade of Br AZh9-4 bronze. Five experiments were conducted on each of the materials. The samples in the experiment underwent a fine-step loading, at each step of it radiation of signal occurred simultaneously, and another series of dislocations was prepared, that could reach surface of crystal and emit a stress wave at the next moment of loading. Thus, the joint radiation of energy dislocations prepared for movement was already formed. A comparison of experimental data, obtained on the basis of acoustic emission, with calculated values of endurance limit, obtained by empirical formulas through the ultimate strength of this material, performed by the Fisher criterion, has shown their adequacy at a significance level of 5 %. Evaluation of the experimental results of endurance limit determination on basis of acoustic emission by the Cochran test indicates that variances of measurement results in experiment are uniform for all types of used materials. The results have shown that such method on the basis of synergistically organized acoustic emission allows us to quickly obtain experimental values of endurance limit of material with sufficiently high degree of accuracy.

About the Authors

A. N. Savel’ev
Siberian State Industrial University, Russia, Kemerovo Region, Novokuznetsk
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Mechanics and Machine Engineering


E. A. Savel’eva
Siberian State Industrial University, Russia, Kemerovo Region, Novokuznetsk
Russian Federation
Candidates for a degree of Cand. Sci. (Eng.) of the Chair of Mechanics and Machine Engineering


D. O. Anisimov
Siberian State Industrial University, Russia, Kemerovo Region, Novokuznetsk
Russian Federation
Postgraduate of the Chair of Mechanics and Machine Engineering


O. D. Prokhorenko
Siberian State Industrial University, Russia, Kemerovo Region, Novokuznetsk
Russian Federation
Cand. Sci. (Eng.), Senior Lecturer of the Chair “Thermal Power and Ecology”


References

1. Shkol’nik L.M. Metodiki ustalostnykh ispytanii [Fatigue test methods]. Moscow: Metallurgiya, 1978, 304 p. (In Russ.).

2. Grebennik V.M. Ustalostnaya prochnost’ i dolgovechnost’ metallurgicheskogo oborudovaniya [Fatigue strength and durability of metallurgical equipment]. Moscow, Mashinostroenie, 1969, 256 p. (In Russ.).

3. Serensen S.V., Kogaev V.P., Shneiderovich R.M. Nesushchaya sposobnost’ i raschet detalei mashin na prochnost’ [Carrying capacity and structural analysis of machine parts]. Moscow: Mashinostroenie, 1975, 488 p. (In Russ.).

4. Howell F.M., Miller J.L. Axial-stress fatigue strengths of several structural aluminum alloys. Proceeding ASTM. 1955, vol. 55, pp. 955–967.

5. Gavrilov D.A. Correlation between mechanical characteristics under static and cyclic loading conditions for structural steels and alloys. Problemy prochnosti. 1979, no. 5, pp. 59–65. (In Russ.).

6. Savel’ev A.N., Savel’eva E.A., Lokteva N.A. Strength properties evaluation of materials of technological machines elements based on the synergetically organized signals of acoustic emission. Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 6, pp. 443–450. (In Russ.).

7. Gur’ev A.V., Misharev G.M. Features of the initial stage of plastic deformation under static and cyclic loading of carbon steel. In: Metallovedenie i prochnost’ materialov. T. 3: Tr. Volgogradskogo politekhnicheskogo instituta. Volgograd: VPI, 1971, pp. 56–64. (In Russ.).

8. Ivanov Yu.F., Bessonov D.A., Vorob’ev S.V. etc. Ustalostnaya dolgovechnost’ stali martensitnogo klassa, modifitsirovannoi vysokointensivnymi elektronnymi puchkami [Fatigue life of martensitic steel modified with high-intensity electron beams]. Novokuznetsk: Inter-Kuzbass, 2011, 259 p. (In Russ.).

9. Ivanova V.S., Balankin A.S., Bunin I.Zh., Okhsotoev A.A. Sinergetika i fraktaly v materialovedenii [Synergetics and fractals in materials science]. Moscow: Nauka, 1995, 280 p. (In Russ.).

10. Koneva N.A., Lychagin D.V., Zhukovskii S.P., Kozlov E.V. Evolution of the dislocation structure and stages of plastic flow of a polycrystalline iron-nickel alloy. Physics of Metals and Metallography. 1985, vol. 60, no. 1, pp. 157–166.

11. Zuev L.B., Barannikova S.A. Fizika prochnosti i eksperimental’naya mekhanika: uchebnoe posobie [Physics of strength and experimental mechanics: Manual]. Novosibirsk: Nauka, 2011, 350 p. (In Russ.).

12. Savel’eva E.A., Savel’ev A.N. Sposob registratsii signalov akusticheskoi emissii [Method of recording for acoustic emission signals]. Patent RF no. 2555506. Bulleten’ izobretenii. 2014, no. 19. (In Russ.).

13. Bolotin. Yu.I., Greshnikov V.A., Gusakov A.A, Drobot Yu.B. Ispol’zovanie emissii voln napryazhenii dlya ispytanii materialov izdelii [Using emission of stress waves for testing the products materials]. Moscow: Izd-vo standartov, 1976, 272 p. (In Russ.).

14. Greshnikov V.A., Drobot Yu.V. Akusticheskaya emissiya. Primenenie dlya ispytanii materialov i izdelii [Acoustic emission. Application for testing of materials and products]. Moscow: Izd-vo standartov, 1976, 272 p. (In Russ.).

15. Natsik V.D. Radiation of sound by a dislocation that emerges on the surface of a crystal. Pis’ma v ZhETF. 1968, vol. 8, no. 6, pp. 324–328. (In Russ.).

16. Frederick I.R. Dislocation motion as a source of acoustic emission. In.: Acoustic emission, ASTM STP-505. 1972, pp. 129–139.

17. Pollock A.A. Stress-wave emission a new tool for industry. Ultrasonics. 1969, vol. 6 (2), no. 32, pp. 88–92.

18. Gillis P.P. Dislocation motions and acoustic emission. In.: Acoustic emission, ASTM STP-505, 1972, pp. 20–29.

19. Boiko V.S., Garber R.I., Krivenko L.F. Sound emission at annihilation of a dislocation cluster. Fizika tverdogo tela. 1974, vol. 16, no. 4, pp. 1233–1235. (In Russ.).

20. Haken H. Synergetic. An introduction. Nonequilibrium phase transitions and self-organization in Physics, Chemistry and Biology. 2nd ed. Berlin, Heilderberg, New York: Springer-Verlag, 1978.

21. Koneva N.A. Self-organization and phase transition in dislocation structure. In.: Proc. of 9th ICSMA, Israel, Haifa 1991. London: Fruid Publ. Company LTD, 1991, pp. 157–164.

22. Glasov M., Llanes L.M., Laird C. Self-organized dislocation structures (SODS) in fatigue metals. Phys. Stat. Sol. (a). 1995, vol. 149, pp. 297.

23. Davidson D.L., Lankford J. Fatigue crack growth in metals and alloys: mechanism and micromechanism. International Materials Reviews. 1992, vol. 37, no. 2, pp. 45–76.

24. Ivanova V.S., Terent’ev V.F. Priroda ustalosti metallov [Nature of metal fatigue]. Moscow: Metallurgiya, 1975, 454 p. (In Russ.).

25. Mecke K., Blochwitz G., Kremling U. The development of the dislocation structures during the fatigue process of F.C.C. single crystals. Cryst. Res. And Technol. 1982, vol. 17, no. 12, pp. 1557–1570.

26. Mugrabi H. Dislocations in fatigue. In: Dislocation and Properties of Real Materials (Conf. Proc.). London: The Institute of Metals, 1985, no. 323, pp. 244–262.

27. Grebennik V.M., Tsapko V.K. Nadezhnost’ metallurgicheskogo oborudovaniya. Spravochnik [Reliability of metallurgical equipment. Reference book]. Moscow: Metallurgiya, 1980, 344 p. (In Russ.).

28. Kogaev V.P., Drozdov Yu.N. Prochnost’ i iznosostoikost’ detalei mashin [Strength and wear resistance of machine parts]. Moscow: Mashinostroenie, 1991, 319 p. (In Russ.).

29. Adler Yu.P. Vvedenie v planirovanie eksperimenta [Introduction to experiment planning]. Moscow: Metallurgiya, 1969, 155 p. (In Russ.).

30. Gorbatenko N.I., Lankin M.V., Shaikhutdinov D.V. Planirovanie eksperimenta: Uchebnoe posobie [Experiment planning: Manual]. Novocherkassk: Oniks+, 2007, 120 p. (In Russ.).

31. Rogov V.A., Pozdnyak G.G. Metodika i praktika tekhnicheskikh eksperimentov: Uchebnoe posobie [Method and practice of technical experiments: Textbook]. Moscow: Izdatel’skii tsentr “Akademiya”, 2005, 288 p. (In Russ.).


Review

For citations:


Savel’ev A.N., Savel’eva E.A., Anisimov D.O., Prokhorenko O.D. APPLICATION OF STRESS WAVES EMISSION FOR DETERMINATION OF FATIGUE CHARACTERISTICS OF MATERIAL. Izvestiya. Ferrous Metallurgy. 2019;62(2):141-147. (In Russ.) https://doi.org/10.17073/0368-0797-2019-2-141-147

Views: 617


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)