Preview

Izvestiya. Ferrous Metallurgy

Advanced search

ESTIMATION OF STRUCTURAL SENSITIVITY OF PIPE STEELS ULTIMATE STRAIN TO PIPELINES SERVICE LIFE USING COMPLEX ENERGY CRITERIA OF SYNERGY FRACTURE

https://doi.org/10.17073/0368-0797-2019-1-25-33

Abstract

The article gives an overview of well-known hypotheses and theories on ultimate state of metals. Processes in metals when stress is applied are described. Multifunctional equation for ultimate strain dependence from density (opening) is offered with all the factors of metal’s ultimate state before fracture. Phases of the fracture of deformed polycrystal structure are specified. An equation is presented that relates the ultimate deformation of a metal to fracture with all the characteristics that determine the limiting state of the metal. Two- or three- compound energy failure criteria equations used for quality estimation of metal structure and performance when main pipeline operating are given for such criteria as energy capacity, crack initiation, crack proliferation, fragility and scale. The fracture criteria calculation for Kh70 steel samples of pipes after operation for 5, 20 and 24  years was made as an example. The comparative analysis of complex fracture criteria values for Kh70 steel pipelines of different lifespans has been carried out. After 5, 20 and 24 years of usage mechanical characteristics of steel Kh70 of main pipelines haven’t changed dramatically, and fracture criteria are inclined to decrease from 21 to 48.5  %, crack proliferation and fragility criteria are the most changeable. At mesolevel the nature of crack initiation is the same for all classes of steel. Under the influence of operating loads, energy intensity, i.e. the ability of metal to withstand any loads with increasing service life is significantly reduced, which is confirmed by the change in the fracture criteria considered in the article. It is shown that the fracture criteria can be used to predict the performance of pipeline steels after a long period of operation.

About the Authors

V. A. Skudnov
Novgorod State Technical University named after R. Alexeev
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Physical Metallurgy, Heat and Plastic Treatment of Metals”


A. S. Safronov
JSC Transneft UW Service
Russian Federation
Acting Chief Mechanic


A. A. Khlybov
Novgorod State Technical University named after R. Alexeev
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Materials Science, Technology of Materials and Heat Treatment of Metals”


References

1. Efron L.I. Materiallovedenie v bol’shoi metallurgii. Trubnye stali [Materials science in metallurgy. Pipe steel]. Moscow: Metalurgizdat, 2012, 696 p. (In Russ.).

2. Filippov M.A., Baraz V.R., Gervas’ev M.A., Rozenbaum M.M. Metodologiya vybora metallicheskikh splavov i uprochnyayushchikh tekhnologii v mashinostroenii: uchebnoe posobie: v 2 t. T.  1. Stali i chuguny [Methodology for selection of metal alloys and hardening technology in mechanical engineering: Textbook in 2 vols. Vol.  1: Steel and iron]. Ekaterinburg: Izd-vo Ural. Un-ta, 2013, 232 p. (In Russ.).

3. Kumanin V.I., Sokolova M.L., Luneva S.V. Development of damage in metallic materials. Metal Science and Heat Treatment. 1995, vol. 37, no. 4, pp. 131–135.

4. Makhutov N.A. Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost’ [Deformation and fracture criteria and calculation of strength of construction elements]. Moscow: Mashinostroenie, 1981, 272 p. (In Russ.).

5. Arkharov V.I. Mesoscopic phenomena in solids. In: Problemy sovremennoi fiziki: Sb.statei k 100-letiyu so dnya rozhdeniya A.F.  Ioffe [Issues of modern physics: Coll. of articles to the 100th anniversary of A.F. Ioffe]. Leningrad: Nauka, 1980, pp. 384–409. (In Russ.).

6. Stepanov V.A. Role of the deformation in the destruction process of solids. In: Problemy prochnosti i plastichnosti metallov: sb. nauchn. tr. LTFI [Problems of strength and plasticity of metals: Coll. of sci. papers of LTFI]. Leningrad: Nauka, 1979, pp. 10–26. (In Russ.).

7. Vladimirov V.I. Fizicheskaya priroda razrusheniya metallov [Physical nature of metals fracture]. Moscow: Metallurgiya, 1984, 280  p. (In Russ.).

8. Zhurkov S.N. Kinetic theory of strength. Zhurnal Tekhnicheskoi Fiziki. 1958, vol. 28, pp. 17–19. (In Russ.).

9. Ivanova V.S., Balankin A.S., Bunin I.Zh., Oksogoev A.A. Sinergetika i fraktaly v materialovedenii [Synergetics and fractals in materials science]. Moscow: Nauka i zhizn’, 1994, 383 p. (In Russ.).

10. Ivanova V.S. Synergetic-based consideration of Gilemot’s concept of the ultimate specific deformation energy. Russian metallurgy (Metally). 1989, no. 5, pp. 160–169.

11. Skudnov V.A. Predel’nye plasticheskie deformatsii metallov [Limit plastic deformations of metals]. Moscow: Metallurgiya, 1989, 187  p. (In Russ.).

12. Skudnov V.A. Sinergetika yavlenii i protsessov v metallovedenii, uprochnyayushchikh tekhnologiyakh i razrushenii. Uchebnoe posobie [Synergetics of phenomena and processes in metallurgy, hardening technologies and fracture. Tutorial]. Nizhny Novgorod: NGTU im R.E. Alekseeva, 2011, 198 p. (In Russ.).

13. Skudnov V.A. Opredelenie velichiny rabotosposobnosti materialov (stalei) detalei mashin: Metod. ukazaniya dlya vypolneniya lab. i nauchn.-issled. rabot studentami, magistrantami i aspirantami spets. 110500 [Determination of the efficiency of materials (steel) of machinery parts: Method. instructions for laboratory and research works for students, undergraduates and postgraduates of 110500 specialization]. Nizhny Novgorod: NGTU, 2002, 14 p. (In Russ.).

14. Skudnov V.A., Bogashev F.A. Laws of metal density changes at metal forming. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 1986, no. 8, pp. 38–45. (In Russ.).

15. Skudnov V.A. Behavioral patterns of metals energy intensity and new energy-sensitive destruction criterion. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2013, no. 1, pp.  52–55. (In Russ.).

16. Borzdyka A.M., Getsov L.B. Relaksatsiya napryazhenii v metallakh i splavakh [Stress relaxation in metals and alloys]. Moscow: Metalurgiya, 1978, 256 p. (In Russ.).

17. Maslov L.I., Zamolodchikov O.G., Kunavin S.A. Using the parameters of microrelief failure to assess the performance of construction materials. Izvestiya AN SSR. Metally. 1982, no. 1, pp. 196–201. (In Russ.).

18. Tot L., Romvari P. Application of the concept of specific fracture performance for the evaluation of cyclic crack resistance of steels. Problemy prochnosti. 1986, no. 1, pp. 38–45. (In Russ.).

19. Betekhin V.I. Plastic deformation and fracture of crystalline bodies. Message 1-2. Problemy prochnosti. 1979, no. 7, pp. 38–45; 1979, no. 8, pp. 51–57. (In Russ.).

20. Problemy stareniya stalei magistral’nykh truboprovodov [Ageing of steel of main pipelines]. Budzulyak B.V., Sedykh A.D., Chuvil’deev  V.N. eds. Nizhny Novgorod: Universitetskaya kniga, 2006, 220 p. (In Russ.).

21. Novikov I.I. Thermodynamic aspects of plastic deformation and fracture of metals. In: Fiziko-mekhanicheskie i teplofizicheskie svoistva metallov: sb. nauchn. tr. (IMET) [Physical-mechanical and thermal properties of metals. Coll. of sci. papers (IMET)]. Moscow: Nauka, 1976, pp. 170–179. (In Russ.).

22. Artinger I. Connection between the fracture determining the toughness of hot working tool steels. Proc. Conf. on dimensioning and dapest. Akadem. Kiado, 1974, vol. 1, p. 215.

23. Ginstler Y. Retarding the crack initiation process during low cycle thermal shock fatigue. Proc. Conf. low cycle fatigue and elasto-plastic behavior of materials. (Minich. Sept. 7-11, 1987). Rie K.T.L. ed. N.Y.: Elsevier Appl. Sci., 1987, p. 643.

24. Poyarkova E.V. Evolyutsiya strukturno-mekhanicheskoi neodnorodnosti materialov svarnykh elementov konstruktsii v ramkakh kontseptsii ierarkhicheskogo soglasovaniya masshtabov: avtoref. dis... doktora tekh. nauk. [Evolution of structural and mechanical heterogeneity of welded structural elements of materials within the concept of hierarchical matching scale. Extended Abstract of Dr. Sci. Diss.]. Ufa: Ufimskii Gosudarstvennyi Neftyanoi Tekhnicheskii Universitet, 2015. (In Russ.).

25. RD-23.040.00-KTN-115-11. Nefteprovody i nefteproduktoprovody magistral’nye. Opredeleniya prochnosti i dolgovechnosti trub i svarnykh soedinenii s defektami [Pipelines and main pipelines. Determining the strength and durability of the pipe and welds with defects]. Moscow: OAO “AK “Transneft’”, 2011, 142 p. (In Russ.).


Review

For citations:


Skudnov V.A., Safronov A.S., Khlybov A.A. ESTIMATION OF STRUCTURAL SENSITIVITY OF PIPE STEELS ULTIMATE STRAIN TO PIPELINES SERVICE LIFE USING COMPLEX ENERGY CRITERIA OF SYNERGY FRACTURE. Izvestiya. Ferrous Metallurgy. 2019;62(1):25-33. (In Russ.) https://doi.org/10.17073/0368-0797-2019-1-25-33

Views: 712


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)