Preview

Izvestiya. Ferrous Metallurgy

Advanced search

METALLURGICAL PRODUCTION SLAGS – PROMISING MATERIAL FOR TECHNOLOGICAL WASTE RECLAMATION

https://doi.org/10.17073/0368-0797-2018-12-987-992

Abstract

The article describes results of the microplot field trial to investigate potential use of metallurgical slags for fracture of capillary rim  during reclamation of toxic waste dumping areas, such as enrichment  plants  tailings,  solid  waste  dumps,  etc.,  with  minimal  possible  introduction  of  fertile  soil  layer.  Such  approach  allows  energy-effective  utilization  of  metallurgical  wastes.  Four  slags,  produced  at  EVRAZ  West  Siberian  plant  by  different  technologies  were  used:  white  nonferrous, blast-furnace, converter and electric furnace slags. These slags  were used as an inert material, underlying thin fertile soil layer in experimental microplots, where perennial plants (legume-grass mixture)  were sawn. For each slag there was check variant (no fertilizer added),  and  variants  with  potassium  humic  agents,  and  their  combination  as  mineral fertilizers. Aboveground phytomass at the end of the grow ing  season varied from 17 to128 g/m2. Converter and blast furnace slags,  which had the least phytotoxicity, appeared to be better inert materials.  Mineral  fertilizer,  introduced  itself  and  combined  with  humic  agents,  has  increased  aboveground  phytomass  2 – 4 times  as  compared  with  check  variant.  Used  separately,  humic  agent  did  not  affect  plant  production,  whereas  used  together  with  mineral  fertilizer,  it  increased  phytomass  1.6 – 1.8 times.  Thus  combined  introduction  of  mineral  fertilizer  and  humic  agents  is  recommended  to  stimulate  germination  abilit y  and  phytomass  production.  Converter  and  blast  furnace  slags  can be used as inert materials for reclamation with minimal fertile soil  layer application, whereas white non-ferrous and electric furnace slags  are not recommended for such application due to their high phytotoxicity, negatively affecting growth and development of perennial plants,  used for reclamation.

About the Authors

I. P. Belanov
Institute of Soil Science and Agrochemistry Siberian Branch of RAS (ISSA SB RAS)
Russian Federation

Cand. Sci.(Biological), Research Associate

Novosibirsk



N. B. Naumova
Institute of Soil Science and Agrochemistry Siberian Branch of RAS (ISSA SB RAS)
Russian Federation

Cand. Sci.(Biological), Senior Researcher

Novosibirsk



I. S. Semina
Siberian State Industrial University
Russian Federation

Cand. Sci.(Biological), Assist. Professor of the Chair of Geology, Geodesy and Life Safety

Kemerovo Region, Novokuznetsk



O. A. Savenkov
Institute of Soil Science and Agrochemistry Siberian Branch of RAS (ISSA SB RAS)
Russian Federation

Cand. Sci.(Biological), Research Associate

Novosibirsk



References

1. Bryzgalov S.V. Snizhenie negativnogo vozdeistviya domennykh shlakov pri ikh utilizatsii na ob”ekty gidrosfery: Avtoref. dis... kand. tekh. nauk. [Reducing negative impact of blast furnace slag being disposed at hydrosphere objects: Extended Abstract of Cand. Sci. Diss.]. Perm: izd. PGTU, 2009, 17 p. (In Russ.).

2. Pugin K.G., Vaisman Ya.I., Yushkov B.S., Maksimovich N.G. Snizhenie ekologicheskoi nagruzki pri obrashchenii so shlakami chernoi metallurgii [Reducing environmental burden at handling slags of ferrous metallurgy]. Perm: izd. PGTU, 2008, 316 p. (In Russ.).

3. Reuter M., Xiao Y., Boin U. Recycling and environmental issues of metallurgical slags and salt fluxes. VII International Conference on Molten Slags Fluxes and Salts. The South African Institute of Mining and Metallurgy. 2004, pp. 349–356.

4. Ilutiu-Varvara D.A. Researching the Hazardous Potential of Metallurgical Solid Wastes. PolishJournalofEnvironmentalStudies. 2016, vol. 25, no. 1, pp. 147–152.

5. Jahangir J., Nematollah K., and Afshin D. Ecological Risk Assessment of Lead (Pb) after Waste Disposal from Metallurgical Industries. Research Journal of Environmental and Earth Sciences. 2010, vol. 2 (3), pp. 139–145.

6. Ekologiya Kuzbassa: tsifry, fakty, sobytiya. Departament prirodnykh resursov i ekologii Kemerovskoi oblasti [Ecology of Kuzbass: figures, facts, events. Department of Natural Resources and Ecology of the Kemerovo Region]. Electronic resource. Available at URL: http:// kuzbasseco.ru/?page_id=1010 (Accessed 18.04.2016). (In Russ.).

7. Gray N.F. Environmental impact and remediation of acide mine drainage: a management problem. Environmental Geolog. 1997, vol. 30, pp. 62–71.

8. Lind B.B., Fallman A.M., Larsson L.B. Environmental impact of ferrochrome slag in road construction. Waste Management. 2001, vol. 21 (3), pp. 255–264.

9. Rai A., Prabakar J., Raju C., Morchalle R. Metallurgical slag as a component in blended cement. Construction and Building Mate­ rials. 2002, no. 16, pp. 489–494.

10. Starostina N.N., Mansurova M.S. Analysis of possibility of reducing environmental pollution when disposing mining waste dumps. Ekologiya i bezopasnost’ zhiznedeyatel’nosti. 2014, no. 1, pp. 141–146. (In Russ.).

11. Bobrova Z.M., Il’ina O.Yu., Khokhryakov A.V., Tseitlin E.M. Use of mining and metallurgical wastes for environmental management. Izv. Ural’skogo gosudarstvennogo gornogo universiteta. 2015, no. 4 (40), pp. 16–26. (In Russ.).

12. Gawor L., Jonczy I. Possibilities of recycling of metallurgical slags and coal mining wastes and reclamation of dumping grounds in Upper Silesian Coal Basin (southern Poland). Materials and Geoenvironment. 2015, vol. 62, pp. 271–276.

13. Belanov I.P., Savenkov O.A., Naumova N.B. Phytotoxicity of soil substrates based on metallurgical slags used in reclamation. Pochvy i okruzhayushchaya sreda. 2018, no. 2 (2), pp. 1–12. (In Russ.).

14. Bunzl K., Trautmannsheimer M., Schramel P., Reifenhauser W. Availability of Arsenic, Copper, Lead, Thallium, and Zinc to Various Vegetables Grown in Slag Contaminated Soils. Journal of Environmental Quality. 2001, vol. 30, pp. 934–939.

15. Androkhanov V.A., Krupskaya L.T., Belanov I.P. Sposob zakrepleniya poverkhnosti khvostokhranilishch s ispol’zovaniem inertnykh materialov [Method of fixing tailings dumps surface using iner t materials]. Patent RF no. 2628581. Byulleten’ izobretenii. 2017, no. 24. (In Russ.).

16. Vodoleev A.S., Androkhanov V.A., Berdova O.V., Yumashev a N.A., Cherdantseva E.S. Environmentally safe storage of wastes from iron-ore enrichment. Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya metallurgiya. 2017, vol. 60, no. 10, pp. 792–797. (In Russ.).

17. Nardi S., Panuccio M.R., Abenavoli M.R., Muscolo A. Auxinlike effect of humic substances extracted from faeces of Allolobophora caliginosa and A. rosea. Soil Biol. Biochem. 1994, vol. 26, pp. 1341–1346.

18. Popov A.I. Guminovye veshchestva: svoistva, stroenie, obrazovanie [Humic substances: properties, structure, formation]. St. Petersburg: Izd-vo S. Peterb. un-ta, 2004, 248 p. (In Russ.).

19. Podurets O.I. Relation of dynamics of plant matter stocks with phases of post-technogenic soil formation. Vestnik Tomskogo gosudarstvennogo universiteta. 2011, no. 346, pp. 169–173. (In Russ.).

20. Teuchezh A.A. Role of mobile phosphorus in soil fertilizer harvest system. Nauchnyi zhurnal KubGAU. 2017, no. 127 (03). Electronic resource. Available at URL: http://ej.kubagro.ru/2017/03/pdf/64.pdf (Accessed 18.04.2016). (In Russ.).


Review

For citations:


Belanov I.P., Naumova N.B., Semina I.S., Savenkov O.A. METALLURGICAL PRODUCTION SLAGS – PROMISING MATERIAL FOR TECHNOLOGICAL WASTE RECLAMATION. Izvestiya. Ferrous Metallurgy. 2018;61(12):987-992. (In Russ.) https://doi.org/10.17073/0368-0797-2018-12-987-992

Views: 1084


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)