Preview

Izvestiya. Ferrous Metallurgy

Advanced search

EFFECT OF DEFORMATION ON MIGRATION RATE OF GRAIN BOUNDARIES IN NICKEL

https://doi.org/10.17073/0368-0797-2018-12-974-979

Abstract

Effect of deformation along various directions against migrating  boundary on migration rate of edge boundaries with <100> and <111>  misorientation  axes  in  nickel  was  studied  by  means  of  molecular  dynamics  method.  Grain  boundaries  were  created  in  U-shaped  model.  Force of boundary surface tension, arising from the boundary intension  to  minimize  its  energy,  was  the  reason  of  directed  movement  of  the  boundary toward its area decrease. The force provoking migration and  migration rate of the boundary remained constant throughout the entire  movement  of  the  boundary,  gradually  decreasing  towards  the  end  of  computer  experiment,  which  made  it  possible  to  measure  migration  rate quite simply. Effect of uniaxial deformation along the X, Y, Z axes  on migration rate of the boundaries was considered. Uniaxial deformation in the model was set at beginning of the computer experiment by  changing  corresponding  interatomic  distances  along  one  of  the  axes.  Interactions of nickel atoms with each other were described with the aid  of Cleri Rosato many-particle potential constructed in the framework  of  tight  binding  model.  For  the  boundaries  considered,  dependences  of  migration  rate  on  misorientation  angle  at  temperature  of  1700 K  were obtained. It is shown that the high-angle <111> and <100> edge  boundaries migrate approximately at the same rate, while mobility of  low-angle  boundaries  differs  significantly:  low-angle  <111>  boundaries migrate about twice as fast as the <100> boundaries. It was found  that in almost all cases, both at elastic compression and tension deformation, migration rate of considered boundaries was slowed down. An  exception was the case of deformation along the <111> edge boundary  axis. When compressing along the edge axis, <111> boundary migrated faster, while on the contrary, it was slower at tension. The obtained  results testify to the fact that migration of edge boundaries is not due to  diffusion processes, such as climbing of dislocations, single migrations of  atoms,  but,  apparently,  by  collective  atomic  permutations:  shifts, slides and splittings of grain boundary dislocations.

About the Authors

G. M. Poletaev
Altai State Technical University
Russian Federation

Dr. Sci. (Phys.­math.), Professor, Head of the Chair of Advanced Mathematics and Mathematical Modeling

Barnaul, Altai Territory



I. V. Zorya
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Director of the Institute of Architecture and Construction

Novokuznetsk, Kemerovo Region



R. Y. Rakitin
Altai State University
Russian Federation

Cand. Sci. (Phys.­math.), College Director

Barnaul, Altai Territory



D. V. Kokhanenko
Barnaul branch of the Financial University under the Government of the Russian Federation
Russian Federation

Cand. Sci. (Phys.­math.), Assist. Professor of the Chair of Accounting and IT in Business

Barnaul, Altai Territory



M. D. Starostenkov
Siberian State Industrial University
Russian Federation

Dr. Sci. (Phys.­math.), Professor, Head of the Chair of Physics

Novokuznetsk, Kemerovo Region



References

1. Kaibyshev O.A., Valiev R.Z. Granitsy zeren i svoistva metallov [Grain boundaries and properties of metals]. Moscow: Metallurgiya, 1987, 216 p. (In Russ.).

2. Gottstein G., Shvindlerman L.S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. Second Edition. Boca Raton: CRC Press, 2009, 711 p.

3. Haessner F., Hofmann S. Migration of high angle grain bounda ries. In: Recrystallization of metallic materials. Haessner F. ed. Stuttgart, Riederer-Verlag,1978, pp. 63–96. (Russ.ed.: Haessner F., Hofmann S. Granitsy zeren rekristallizatsionnogo proiskhozhdeniya. In: Rekristallizatsiya metallicheskikh materialov. Moscow: Metallurgiya, 1982, pp. 71−102.)

4. Huang Y., Humphreys F.J. Measurements of grain boundary mobility during recrystallization of a single-phase aluminium alloy. Acta Materialia. 1999, vol. 47, pp. 2259−2268.

5. Huang Y., Humphreys F.J. The effect of solutes on grain boundary mobility during recrystallization and grain growth in some singlephase aluminium alloys. Materials Chemistry and Physics. 2012, vol. 132, pp. 166−174.

6. Gottstein G., Molodov D.A., Shvindlerman L.S. Grain boundary migration in metals: recent developments. Interface Science. 1998, vol. 6, no. 1-2, pp. 7−22.

7. Winning M., Rollett A.D., Gottstein G., Srolovitz D.J., Lim A., Shvind lerman L.S. Mobility of low-angle grain boundaries in pure metals. Philosophical Magazine. 2010, vol. 90, no. 22, pp. 3107−3128.

8. Molodov D.A., Ivanov V.A., Gottstein G. Low angle tilt boundary migration coupled to shear deformation. Acta Materialia. 2007, vol. 55, pp. 1843−1848.

9. Molodov D.A., Straumal B.B., Shvindlerman L.S. Influence of pressure on the migration of LT an BR 001 RT an BR tilt boundaries in tin bicrystals. Soviet Physics, Solid State (English translation of Fizika Tverdogo Tela). 1984, vol. 26, no. 4, pp. 629–633.

10. Molodov D.A., Straumal B.B., Shvindlerman L.S. The effect of pressure on migration of <001> tilt grain boundaries in tin bicrystals. Scripta Materialia. 1984, vol. 18, no. 3, pp. 207−211.

11. Yang C.C., Rollett A.D., Mullins W.W. Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry. Scripta Materialia. 2001, vol. 44, no. 12, pp. 2735−2740.

12. Rollett A.D., Yang C.C., Mullins W.W., Adams B.L., Wu C.T., Kinderlehrer D., Ta’asan S., Manolache F., Liu C., Livshits I., Mason D., Talukder A., Ozdemir S., Casasent D., Morawiec A., Saylor D., Rohrer G.S., Demirel M., El-Dasher B., Yang W. Grain boundary property determination through measurement of triple junction geometry and crystallography. In: Int. Conf. on Grain Growth and Recrystallization, Aachen, Germany, 2001, pp. 165−176.

13. Shtremel’ M.A. Prochnost’ splavov. Ch. 1. Defekty reshetki [Alloy strength. Part 1. Lattice defects]. Moscow: Metallurgiya, 1982, 280 p. (In Russ.).

14. Gottstein G., Sursaeva V., Shvindlerman L. The effect of triple junctions on grain boundary motion and grain microstructure evolution. Interface Science. 1999, vol. 7, pp. 273−283.

15. Upmanyu M., Srolovitz D.J., Shvindlerman L.S., Gottstein G. Triple junction mobility: a molecular dynamics study. Interface Science. 1999, vol. 7, pp. 307−319.

16. Upmanyu M., Srolovitz D.J., Shvindlerman L.S., Gottstein G. Molecular dynamics simulation of triple junction migration. Acta Materialia. 2002. vol. 50, pp. 1405−1420.

17. Starostenkov M.D., Sinyaev D.V., Rakitin R.Yu., Poletaev G.M. Diffusion mechanisms near tilt grain boundaries in Ni3Al intermetallide. Solid State Phenomena. 2008, vol. 139, pp. 89−94.

18. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys. Physical Review B. 1993, vol. 48, pp. 22−33.

19. Poletaev G.M., Novoselova D.V., Kaygorodova V.M. The causes of formation of the triple junctions of grain boundaries containing excess free volume in FCC metals at crystallization. Solid State Phenomena. 2016, vol. 249, pp. 3−8.

20. Starostenkov M., Poletaev G., Rakitin R., Sinyaev D. Interdiffusion and order fracture over grain boundaries in the deformed Ni3Al intermetallide. Materials Science Forum. 2008, vol. 567-568, pp. 161−164.

21. Poletaev G.M., Starostenkov M.D. Mutual diffusion at the interface in a two-dimensional Ni-Al system. Technical Physics Letters. 2003, vol. 29, no. 6, pp. 454−455.

22. Kulabukhova N.A., Poletaev G.M., Starostenkov M.D., Kulagina V.V., Potekaev A.I. A molecular dynamics study of hydrogen-atom diffusion in fcc-metals. Russian Physics Journal. 2012, vol. 54, pp. 1394−1399.

23. Fortes M.A., Deus A.M. Effects of triple grain junctions on equilibrium boundary angles and grain growth kinetics. Materials Science Forum. 2004, vol. 455-456, pp. 648−652.

24. Perevalova O.B., Konovalova E.V., Koneva N.A., Kozlov E.V. Ener gy of grain boundaries of different types in FCC solid solutions, ordered alloys and intermetallics with L12 superstructure. Journal of Materials Science and Technology. 2003, vol. 19, pp. 593−596.

25. Tucker G.J., Tschopp M.A., McDowell D.L. Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Materialia. 2010, vol. 58, pp. 6464–6473.


Review

For citations:


Poletaev G.M., Zorya I.V., Rakitin R.Y., Kokhanenko D.V., Starostenkov M.D. EFFECT OF DEFORMATION ON MIGRATION RATE OF GRAIN BOUNDARIES IN NICKEL. Izvestiya. Ferrous Metallurgy. 2018;61(12):974-979. (In Russ.) https://doi.org/10.17073/0368-0797-2018-12-974-979

Views: 554


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)