EFFECT OF DEFORMATION ON MIGRATION RATE OF GRAIN BOUNDARIES IN NICKEL
https://doi.org/10.17073/0368-0797-2018-12-974-979
Abstract
About the Authors
G. M. PoletaevRussian Federation
Dr. Sci. (Phys.math.), Professor, Head of the Chair of Advanced Mathematics and Mathematical Modeling
Barnaul, Altai Territory
I. V. Zorya
Russian Federation
Cand. Sci. (Eng.), Director of the Institute of Architecture and Construction
Novokuznetsk, Kemerovo Region
R. Y. Rakitin
Russian Federation
Cand. Sci. (Phys.math.), College Director
Barnaul, Altai Territory
D. V. Kokhanenko
Russian Federation
Cand. Sci. (Phys.math.), Assist. Professor of the Chair of Accounting and IT in Business
Barnaul, Altai Territory
M. D. Starostenkov
Russian Federation
Dr. Sci. (Phys.math.), Professor, Head of the Chair of Physics
Novokuznetsk, Kemerovo Region
References
1. Kaibyshev O.A., Valiev R.Z. Granitsy zeren i svoistva metallov [Grain boundaries and properties of metals]. Moscow: Metallurgiya, 1987, 216 p. (In Russ.).
2. Gottstein G., Shvindlerman L.S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. Second Edition. Boca Raton: CRC Press, 2009, 711 p.
3. Haessner F., Hofmann S. Migration of high angle grain bounda ries. In: Recrystallization of metallic materials. Haessner F. ed. Stuttgart, Riederer-Verlag,1978, pp. 63–96. (Russ.ed.: Haessner F., Hofmann S. Granitsy zeren rekristallizatsionnogo proiskhozhdeniya. In: Rekristallizatsiya metallicheskikh materialov. Moscow: Metallurgiya, 1982, pp. 71−102.)
4. Huang Y., Humphreys F.J. Measurements of grain boundary mobility during recrystallization of a single-phase aluminium alloy. Acta Materialia. 1999, vol. 47, pp. 2259−2268.
5. Huang Y., Humphreys F.J. The effect of solutes on grain boundary mobility during recrystallization and grain growth in some singlephase aluminium alloys. Materials Chemistry and Physics. 2012, vol. 132, pp. 166−174.
6. Gottstein G., Molodov D.A., Shvindlerman L.S. Grain boundary migration in metals: recent developments. Interface Science. 1998, vol. 6, no. 1-2, pp. 7−22.
7. Winning M., Rollett A.D., Gottstein G., Srolovitz D.J., Lim A., Shvind lerman L.S. Mobility of low-angle grain boundaries in pure metals. Philosophical Magazine. 2010, vol. 90, no. 22, pp. 3107−3128.
8. Molodov D.A., Ivanov V.A., Gottstein G. Low angle tilt boundary migration coupled to shear deformation. Acta Materialia. 2007, vol. 55, pp. 1843−1848.
9. Molodov D.A., Straumal B.B., Shvindlerman L.S. Influence of pressure on the migration of LT an BR 001 RT an BR tilt boundaries in tin bicrystals. Soviet Physics, Solid State (English translation of Fizika Tverdogo Tela). 1984, vol. 26, no. 4, pp. 629–633.
10. Molodov D.A., Straumal B.B., Shvindlerman L.S. The effect of pressure on migration of <001> tilt grain boundaries in tin bicrystals. Scripta Materialia. 1984, vol. 18, no. 3, pp. 207−211.
11. Yang C.C., Rollett A.D., Mullins W.W. Measuring relative grain boundary energies and mobilities in an aluminum foil from triple junction geometry. Scripta Materialia. 2001, vol. 44, no. 12, pp. 2735−2740.
12. Rollett A.D., Yang C.C., Mullins W.W., Adams B.L., Wu C.T., Kinderlehrer D., Ta’asan S., Manolache F., Liu C., Livshits I., Mason D., Talukder A., Ozdemir S., Casasent D., Morawiec A., Saylor D., Rohrer G.S., Demirel M., El-Dasher B., Yang W. Grain boundary property determination through measurement of triple junction geometry and crystallography. In: Int. Conf. on Grain Growth and Recrystallization, Aachen, Germany, 2001, pp. 165−176.
13. Shtremel’ M.A. Prochnost’ splavov. Ch. 1. Defekty reshetki [Alloy strength. Part 1. Lattice defects]. Moscow: Metallurgiya, 1982, 280 p. (In Russ.).
14. Gottstein G., Sursaeva V., Shvindlerman L. The effect of triple junctions on grain boundary motion and grain microstructure evolution. Interface Science. 1999, vol. 7, pp. 273−283.
15. Upmanyu M., Srolovitz D.J., Shvindlerman L.S., Gottstein G. Triple junction mobility: a molecular dynamics study. Interface Science. 1999, vol. 7, pp. 307−319.
16. Upmanyu M., Srolovitz D.J., Shvindlerman L.S., Gottstein G. Molecular dynamics simulation of triple junction migration. Acta Materialia. 2002. vol. 50, pp. 1405−1420.
17. Starostenkov M.D., Sinyaev D.V., Rakitin R.Yu., Poletaev G.M. Diffusion mechanisms near tilt grain boundaries in Ni3Al intermetallide. Solid State Phenomena. 2008, vol. 139, pp. 89−94.
18. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys. Physical Review B. 1993, vol. 48, pp. 22−33.
19. Poletaev G.M., Novoselova D.V., Kaygorodova V.M. The causes of formation of the triple junctions of grain boundaries containing excess free volume in FCC metals at crystallization. Solid State Phenomena. 2016, vol. 249, pp. 3−8.
20. Starostenkov M., Poletaev G., Rakitin R., Sinyaev D. Interdiffusion and order fracture over grain boundaries in the deformed Ni3Al intermetallide. Materials Science Forum. 2008, vol. 567-568, pp. 161−164.
21. Poletaev G.M., Starostenkov M.D. Mutual diffusion at the interface in a two-dimensional Ni-Al system. Technical Physics Letters. 2003, vol. 29, no. 6, pp. 454−455.
22. Kulabukhova N.A., Poletaev G.M., Starostenkov M.D., Kulagina V.V., Potekaev A.I. A molecular dynamics study of hydrogen-atom diffusion in fcc-metals. Russian Physics Journal. 2012, vol. 54, pp. 1394−1399.
23. Fortes M.A., Deus A.M. Effects of triple grain junctions on equilibrium boundary angles and grain growth kinetics. Materials Science Forum. 2004, vol. 455-456, pp. 648−652.
24. Perevalova O.B., Konovalova E.V., Koneva N.A., Kozlov E.V. Ener gy of grain boundaries of different types in FCC solid solutions, ordered alloys and intermetallics with L12 superstructure. Journal of Materials Science and Technology. 2003, vol. 19, pp. 593−596.
25. Tucker G.J., Tschopp M.A., McDowell D.L. Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Materialia. 2010, vol. 58, pp. 6464–6473.
Review
For citations:
Poletaev G.M., Zorya I.V., Rakitin R.Y., Kokhanenko D.V., Starostenkov M.D. EFFECT OF DEFORMATION ON MIGRATION RATE OF GRAIN BOUNDARIES IN NICKEL. Izvestiya. Ferrous Metallurgy. 2018;61(12):974-979. (In Russ.) https://doi.org/10.17073/0368-0797-2018-12-974-979