Preview

Izvestiya. Ferrous Metallurgy

Advanced search

EFFICIENCY OF HARDENING OF METALLURGICAL EQUIPMENT SPARE PARTS BY HARD ALLOY

https://doi.org/10.17073/0368-0797-2018-12-939-947

Abstract

Composite  materials  (CM)  are  widely  used  for  hardening  of  wearing parts operating at high temperature wear types. They are based  on  high-melting  hard  alloys,  as  which  are  used  carbides  of  transition  metals  of  IV – VI  groups A  determining  the  physics  of  high-temperature wear. For these purposes baked TiC of TN 20 type on the basis  of (Ti, Mo)C – Ni – Mo is used that has a ring structure preventing the  formation of complex alloyed structures on the bounda ry of solid particle-matrix. Due to the minimal solubility of the sintered hard alloy of  TN 20 type in the alloy-bond, at the interface of solid particle – matrix  practically does not stand out complex structural phases causing embrittlement and growth of residual thermal stresses and strains. It leads  to increased wear resistance and longer service life of hardened parts.  In order to increase the opera ting efficiency of metallurgical units due  to  hardening  of  spare  parts  with  a  composite  material  based  on  sintered hard alloy of the TN 20 type using electroslag surfacing (ESW),  a comprehensive program has been developed to control the efficiency  of hardening parts. In the management of hard alloy surfacing the special  attention  is  given  to  heat  and  high  temperature  wear  resistance  determined  by  the  set  of  CM  properties  of  solid  particles.  Therefore,  maintaining of high mechanical, thermal and energy characteristics of  carbides and decrease of the solubility of solid particles in a CM matrix  at surfacing is a priority for improving efficiency in hardening process  of spare parts. Integrated ESW management program for CM is based  on  effects,  aimed  to  prevent  the  formation  of  complex  alloyed  structures on surface of the solid section of particle-matrix; to reduce thermal stresses and deformations (leading to the cracks formation, chipping and deleting solid particles in abrasive wear) and to improve high  temperature wear resistance. Use of the developed control systems for  hardening  process  of  metallurgical  equipment  wearing  parts  has  significantly  increased  the  service  life  of  spare  parts  and  producti vity  of  the metallurgical units, which ensured a certain economic effect.

About the Author

V. А. Bystrov
Siberian State Industrial University
Russian Federation

Dr Sci (Eng), Assist. Professor, Professor of the Chair “Management and Branch Economy”

Novokuznetsk



References

1. Bystrov V.A., Verevkin V.I., Selyanin I.F. Electroslag technology of strengthening metallurgical equipment details with composite materials. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2005, no. 6, pp. 28–32. (In Russ.).

2. Kompozitsionnye materialy: Spravochnik [Composite Materials: Reference book]. Vasil’ev V.V. ed. Мoscow: Mashinostroenie, 2010, 512 p. (In Russ.).

3. Bystrov V.A., Borisova T.N. Role of СM solid particles, working at high temperature wear. V mire nauchnykh otkrytii. 2014, no. 8(56), pp. 22–41. (In Russ.).

4. Bystrov V.A., Tregubova O.G. Thermodynamic compatibility of solid particles with CM matrix. Doklady AN VSh. 2015, no. 4, pp. 255–267. (In Russ.).

5. Aboudi J., Arnold S., Bednarcyk B. Micromechanics of Composite Materials. Elsevier, 2013, 984 p.

6. Brebbia C.A., Klemm A. Materials Characterizations VI: Computational Methods and Experiments. Southampton; Boston: WIT Press. Glasgow Caledonian University, 2013, 364 p.

7. Dvorak G. Micromechanics of Composite Materials. Springer, 2013, 442 p.

8. Kozlowski M., Senkara J. Nickel alloy + TiC composite lagers made by oscillating electron beam. ASM Int. Eur.: Conference Weld and Join Science and Technology: Book Proc. Brussels, 2011, pp. 425–431.

9. Kivineva E.I., Olsom D.L., Matlock D.K. Particulate reinforced metal metrics composite (TiC) as a weld deposited. Welding J. 2009, no. 3, pp. 83–92.

10. Burggraf A.J., Winnubust A.J. Dense and porous nanostracted ceramics and composites (TiC). Third Euro­Ceramics. 2013, vol. 3, pp. 561–576.

11. Grekova N.Yu., Tregubova O.G. Effectiveness of innovations that increase productivity and quality of metal products by spare parts hardening. In.: Nauchnye izyskaniya v sfere sotsial’no­ekonomicheskikh i gumanitarnykh nauk: Mezhdistsiplinarnyi podkhod i genezis znanii [Socio-economic and humanitarian research: Interdisciplinary approach and knowledge genesis]. Samara: “Ofort”, 2017, КМ-0417, pp. 341–359. (In Russ.).

12. Bol’shakov V.I., Andrianov I.V. Asimptoticheskie metody rascheta kompozitsionnykh materialov s uchetom vnutrennei struktury [Asymp totic methods of composite materials design taking into account internal structure]. Dnepropetrovsk: Porogi, 2008, 197 p. (In Russ.).

13. Bystrov V.A., Grekova N.Yu., Tregubova O.G. Formation of rational management programs for ESW parts hardening using new CM. Vestnik SibGIU. 2012, no. 1, pp. 60–65. (In Russ.).

14. Verevkin V.A., Atavin T.A. Optimization of ESR process for cold rolling bimetallic rolls. Vestnik RAEN. 2008, no. 10, pp. 126–128. (In Russ.).

15. Karakulov V.V., Smolin I.Yu. Numerical method for predicting effective mechanical properties of composites under shock loading, considering structure evolution. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 2013, vol. 4, no. 24, pp. 70–77. (In Russ.).

16. Whitehorse C.V. Applications in hard facing. IIW Public Session and Metals Technology Conference: Sydney, 2011. 6.1/1 – 6.1/20.

17. Xidong Hui, Zhifu Wang, Benmao Sun. Study of high-temperature deformation of casting Fe-26Cr-14Ni /TiC (p) composite. Instit. Of Materials Science, Shandong Univ. of Technology. Jinan. 2011, vol. 19, no. 12, pp. 64–68.

18. Walker D.M., Smith R.M. Bor, receipt, structure and properties. In: Materials of the 4th International Symposium on forest. Moscow: Nauka, 2014, pp. 32–44.

19. Bystrov V.A., Borisova T.N. CM solids boriding. V mire nauchnykh otkrytii. 2015, no. 2(59), pp. 22–42. (In Russ.).

20. Artem’ev A.A. Razrabotka tekhnologii EShN poroshkovoi provolokoi s uprochnyayushchimi chastitsami TiB2 : Avtoref. dis. kand. tekhn. nauk [Development of ESW technology using powder wire with TiB2 particles: Extended Abstract of Cand. Sci. Diss.]. Volgograd, 2010, 13 p. (In Russ.).

21. Tumanov A.V., Mitin B.S., Panov V.S. Kinetics of wetting nickel intermetallic compounds by TiC and TiNC melts. Fizicheskaya khimiya. 2012, vol. 54, no. 6, pp. 1434–1437. (In Russ.).

22. Sovremennoe predprinimatel’stvo [Modern entrepreneurship]. Kirikov O.I. ed. Vol. 18. Voronezh: VGPU, 2007, 320 p. (In Russ.).


Review

For citations:


Bystrov V.А. EFFICIENCY OF HARDENING OF METALLURGICAL EQUIPMENT SPARE PARTS BY HARD ALLOY. Izvestiya. Ferrous Metallurgy. 2018;61(12):939-947. (In Russ.) https://doi.org/10.17073/0368-0797-2018-12-939-947

Views: 610


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)