Preview

Izvestiya. Ferrous Metallurgy

Advanced search

DIRECT STEEL ALLOYING BY MANGANESE UNDER RECENT CONDITIONS OF ELECTRIC STEEL-MAKING

https://doi.org/10.17073/0368-0797-2018-12-933-938

Abstract

One of the directions of increasing production efficiency in ferrous  metallurgy  is  reduction  of  expensive  and  scarce  ferroalloy  consumption.  Great  opportunities  in  that  direction  are  provided  by  technology  of  direct  steel  alloying  by  oxide  materials.  Thermodynamic  study  of  the  process  of  direct  steel  alloying  by  manganese  oxide  materials  (manganese  ore)  and  industrial  testing  of  that  technology  has  been done in that work. Two options of direct alloying technology have  been considered: during steel melting in modern 100-ton EAF in oxidative conditions and during processing of steel on ladle furnace (LF)  in reductive conditions. Thermodynamic modeling of oxidative technology  option  by  TERRA  software  package  has  shown  that  there  is  opportunity to increase content of manganese in metal by manganese  ore  injection.  Key  factor  in  that  process  is  current  carbon  content  in  steel.  Content  of  manganese  can  be  raised  up  to  0.6 %  and  more  in  medium and  high-carbon  steel.  Residual  manganese  in  low-carbon  steel is defined by value of carbon content in the end of oxygen lancing. Graphic dependence is provided. MnO + Si = Mn + SiO2 is main  reaction  of  the  process  of  direct  alloying  under  reductive  conditions.  Thermodynamic analysis gives very rough data. That is why semi-empirical analysis was performed, which was based on received industrial  results of FeO and MnO proportion contained in slag in the end of steel  processing at LF. That way of process estimation is considered reasonable, because of approximation to balance of metal-slag system during  long processing of steel at LF. Using this proportion, and conditions of  slag initial basicity retaining and maintaining of FeO content in slag at  level  around  1 %,  balance  equation  describing  process  of  direct  steel  alloying  by  manganese  ore  at  ladle  was  derived.  This  equation  helps  to calculate basic technological parameters of the process of direct alloying  by  manganese  ore  as  applied  to  specific  conditions  of  production.  Good  convergence  of  theoretical  calculation  and  practical  data  has been received.

About the Authors

A. V. Dmitrienko
Siberian State Industrial University
Russian Federation

Postgraduate of the Chair of Ferrous Metallurgy

Novokuznetsk, Kemerovo Region



E. V. Protopopov
Siberian State Industrial University
Russian Federation

Dr Sci. (Eng.), Professor of the Chair of Ferrous Metallurgy

Novokuznetsk, Kemerovo Region



V. I. Dmitrienko
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair of Ferrous Metallurgy

Novokuznetsk, Kemerovo Region



N. F. Yakushevich
Siberian State Industrial University
Russian Federation

Dr Sci. (Eng.), Professor of the Chair “Non­Ferrous Metallurgy and Chemical Engineering”

Novokuznetsk, Kemerovo Region



V. F. Goryushkin
Siberian State Industrial University
Russian Federation

Dr. Sci. (Chem.), Professor of the Chair of Science named after V.M. Finkel

Novokuznetsk, Kemerovo Region



References

1. Bulyanda A.A., Nakonechnyi A.Ya., Mizin V.G. Manganese saving in converter steel production. Metallurgicheskaya i gornorudnaya promyshlennost’. 1986, no. 3, pp. 12–13. (In Russ.).

2. Nakonechnyi A.Ya., Urtsev V.N., Afonin S.Z., Sinyakov R.V., Kudrin V.A., Khabibulin D.M., Shmakov A.V. The advantages of using waste-free and environmentally rational direct alloying technologies for a complex solution to the problem of resource saving and environment protection. In: Trudy odinnadtsatogo kongressa staleplavil’shchikov [Proc. of the 11th Congress of Steelmakers]. Moscow: Chermetinformatsiya, 2011, pp. 92–110. (In Russ.).

3. Bobkova O.S., Barsegyan V.V. Prospects of technologies for the direct alloying of steel from oxide melts. Metallurgist. 2006, vol. 50, no. 9-10, pp. 463–468.

4. Tolymbekov M.Zh., Takenov T.D., Akhmetov A.B. Pryamoe legirovanie stali margantsem [Direct alloying of steel with manganese]. Almaty: NITs “Ғylym”, 2003, 304 p. (In Russ.).

5. Cacir Ali Fuat, Yaman Atila Afes Tayfuu. Manganfalling aus schwefel sauer Losungen durch induziele Oxidation. Chem. Acta Turk. 1982, Bd. 10, no. 1, pp. 51–57.

6. Chernaya metallurgiya zarubezhnykh stran (obzor). Kontrakt No 062­3/36 ot 23.05.96 g. [Ferrous metallurgy of foreign countries (review). Contract no. 062-3/36, May 23, 1996]. Moscow: Chermetinformatsiya, 1996, 74 c. (In Russ.).

7. Ubaruki T., Kanemoto M., Ogatoetal S. Development of smelting Reduction of Iron Ore-an Approach to Commercial Ironmaking. Iron and Steelmaking. 1990, no. 12, pp. 30–37.

8. Fruehan R.J. Condition and prospects of converter production development. Proсess 6th International Iron and Steel Congress, Nagoya, Oct. 21 – 26. 1990, no. 3, pp. 73–85.

9. Chappelien Ph. Application of manganese ore in steelmaking shop of plant Solla c Florange. Revue de Métallurgie (France). 1989, vol. 86, no. 12, pp. 999–1001.

10. Ibaraki Tetsuhari. Metallurgical effect of combined converter process with variable intensity of scavenging. Journal of the Iron and Steel Institute of Japan. 1984, vol. 70. no. 12, pp. 897.

11. Kaneko Tonhiyuki. Lowslag process converter melting. Disoxidation of manganese ore during lowslag process. Journal of the Iron and Steel Institute of Japan. 1987, vol. 73, no. 12, pp. 275.

12. Vargas-Ramirez M., Romero-Serrano A., Chavez-Alcala F. Reduction of MnO from molten slags with liquid steel of high carbon content. Steel Research. 2002, vol. 73, no. 9, pp. 75–80.

13. Toshiyukk Kaneko. Definition of optimal composition of manganese agglomerate, which provide high speed of manganese disoxidation. Current advances of materials and processes. 1991, vol. 4, no. 4, pp. 1831–1838.

14. Nokhrina O.I. Razvitie teorii i razrabotka resursosberegayu­ shchei tekhnologii raskisleniya i legirovaniya stali oksidnymi marganetssoderzhashchimi materialami: Avtoref. diss. d­ra tekh nauk [Development of theory and resource-saving technology of deoxidation and alloying of steel with manganese oxide materials: Extended Abstract of Dr. Sci. Diss.]. Novokuznetsk, 2005, 43 p. (In Russ.).

15. Klimov V.Yu., Rybenko I.A., Mochalov S.P. Development and application of computer tool system for thermodynamic calculations based on Astra software package. Izvestiya VUZov. Chernaya metal­ lurgiya = Izvestiya. Ferrous Metallurgy. 2005, no. 4, pp. 54–60. (In Russ.).

16. Suk Min-Oh, Sung-Koo, Seo Chang-Woo, Kim Seon-Hyo, Kim Jeon-Sik, Shim Sang-Chut, Kim Jcong-Tae. The effect of carbon in slag on steel reoxidation be CaO-SiO2-Al2O3-MgO-MnO-FeO slags. Steel Rek. Int. 2005, vol. 76, no. 4, pp. 287–295.

17. Grigoryan V.A., Belyanchikov L.N., Stomakhin F.Ya. Teoreticheskie osnovy elektrostaleplavil’nykh protsessov [Theoretical foundations of electric melting processes]. Moscow: Metallurgiya, 1987, 271 p. (In Russ.).

18. Meraikib Mohammed. Effect of BaO, basicity and temperature on manganese distribution between slag and hot metal in blast furnace. Steel Res. Int. 2009, vol. 80, no. 2, pp. 99–106.

19. Ban’ya S., Dong-Shim. Application of the model of regular solutions to steel slags. In: IX Sovetsko­yaponskii simpozium po fiziko­khimicheskim osnovam metallurgicheskikh protsessov [9th Soviet-Japanese Symposium on the Physico-Chemical Fundamentals of Metallurgical Processes]. Moscow: IMET AN SSSR, 1983, pp. 21–41. (In Russ.).

20. Yakovlev P.D. Promyshlennye tipy rudnykh mestorozhdenii: Uchebnoe posobie dlya vuzov [Industrial types of ore deposits: Manual for Universities]. Moscow: Nedra, 1886, 358 p. (In Russ.).


Review

For citations:


Dmitrienko A.V., Protopopov E.V., Dmitrienko V.I., Yakushevich N.F., Goryushkin V.F. DIRECT STEEL ALLOYING BY MANGANESE UNDER RECENT CONDITIONS OF ELECTRIC STEEL-MAKING. Izvestiya. Ferrous Metallurgy. 2018;61(12):933-938. (In Russ.) https://doi.org/10.17073/0368-0797-2018-12-933-938

Views: 979


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)