Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Global recycling experience of red mud - a review. Part i: pyrometallurgical methods

https://doi.org/10.17073/0368-0797-2018-11-843-858

Abstract

This review considers the papers aimed to find an effective solution to the red mud utilization problem. Red mud or bauxite residue is a hazardous materials that are generating during production of alumina by the Bayer process. Depending on the composition of bauxite and the technology, production of 1 ton alumina forms from 0.9 to 1.5 tons of this waste. The global inventory of red mud is estimated at about 4 billion ton in 2015. The main quantity of bauxite residue is not processed, but pumped into land-based ponds and it leads to environmental pollution. In 2010 in Hungary a pond containing red mud were collapsed, freeing about 700 thousand m3 of liquid waste, as a result 10 people were died, about 350 houses were destroyed and significant regions were polluted. Red mud obtained by different plants has various chemical and phase compositions. Despite this fact the main components of red mud is iron-containing minerals, so bauxite residue can be considered primarily as a raw material for the metallurgical industry. This part of the review considers pyrometallurgical methods for of red mud treatment, including both methods of low-temperature reduction at temperatures of 1050 - 1200 °C and high-temperature reduction melting, as well as utilization methods of the resulting slags. These slag utilization methods can be used for extraction of alumina, titanium and rare-earth metals, obtaining building materials such as various cements, mineral wool and flux materials for metallurgy. Methods of alkali removing, drying and agglomeration of red mud also considered. It has been shown that the best ways of bauxite residue recycling are the pyrometallurgical methods with obtaining of iron-containing product and slag for the production of building materials or metallurgical fluxes. These techniques make possible to utilize a large amount of red mud with exception of additional waste formation. This is the first part in a series of three related reviews examining the world experience of red mud recycling by various ways.

About the Authors

D. V. Zinoveev
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Junior Researcher of the Laboratory “Physicoche-mistry and technology of iron ore processing".

Moscow



P. I. Grudinskii
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Junior Researcher.

Moscow



V. G. Dyubanov
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Cand Sci. (Eng.), Head of the Laboratory “Physico-chemistry and technology of iron ore processing".

Moscow



L. V. Kovalenko
Baikov Institute of Metallurgy and Materials Science, RAS
Russian Federation

Dr. Sci. (Eng.), Professor, Head of the Laboratory of New Metallurgical Processes.

Moscow



L. I. Leont’ev
Baikov Institute of Metallurgy and Materials Science, RAS; National University of Science and Technology “MISIS” (MISIS); Scientific Council on Metallurgy and Metal Science of Russian Academy of Sciences (Department of Chemistry and Material Sciences)
Russian Federation

Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher.

Moscow



References

1. Zhang R., Zheng S., Ma S., Zhang Y. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. Journal of Hazardous Materials. 2011, vol. 189, pp. 827-835.

2. Evan K. The history, challenges and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy. 2016, vol. 2, pp. 316-331.

3. Trushko V.L., Utkov V.A., Bazhin V.Yu. Relevance and possibilities of complete processing of red mud of alumina production. Zapiski Gornogo instituta. 2017, vol. 3, pp. 547-553. (In Russ.)

4. Martynov N.N., Martynova N.A., Chernousov P.I., Pyrikov A.N. Aktual’nye aspekty ekologichesta chistogo proizvodstva i retsiklinga metallov [Actual aspects of environmentally friendly production and recycling of metals]. Moscow: Roliks, 2014, 256 p. (In Russ.).

5. Zhaobo L., Hongxu L. Metallurgical process for valuable elements recovery from red mud - a review. Hydrometallurgy. 2015, vol. 155, pp. 29-43.

6. Kaussen F., Friedrich B. Reductive smelting of red mud for iron recovery. ChemieIngenieur Technik. 2015, vol. 87, no. 11, pp. 1535-1542.

7. Anton A., Rekasi M., Uzinger N. etc. Modelling the Potential Effects of the Hungarian Red Mud Disaster on Soil Properties. Water, Air, & Soil Pollution. 2012, Vol. 223, no. 8, pp. 5175-5188.

8. Boily R. Twenty cases of red hazard, an inventory of ecological problems caused by bauxite residue from alumina production. Conference paper in Inforex on October 3, 2012, Larval, Quebec, Canada. Available at URL: www.orbitealuminae.com/media/upload/filings/Twenty_Cases_of_Red_Hazard_-_PublicVF.pdf (Accessed 15.06.2018)

9. Mayes W.M., Jarvis A.P., Burke I.T. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environmental Science & Technology. 2011, vol. 45, no. 12, pp. 5147-5155.

10. Grenerczy G., Wegmuller U. Persistent scatterer interferometry analysis of the embankment failure of a red mud reservoir using EN-VISAT ASAR data. Natural Hazards. 2011, vol. 59, pp. 1047-1053.

11. Tsakiridis P.E., Agatzini-Leonardou S., Oustadakis P. Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials. 2004, vol. 116, no. 1-2, pp. 103-110.

12. Cakici A.I., Yanik J., Karayildirim S.U.T., Anil H. Utilization of red mud as catalyst in conversion of waste oil and waste plastics to fuel. Journal of material cycles and waste management. 2004. vol. 6, no. 1, pp. 20-26.

13. Power G., Grafe M., Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy. 2011, vol. 108, no. 1-2, pp. 33-45.

14. Klauber C., Grafe M., Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 2011, vol. 108, no. 1-2, pp. 11-32.

15. Grafe M., Power G., Klauber C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy. 2011, vol. 108, no. 1-2, pp. 60-79.

16. Grafe M., Klauber C. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy. 2011, vol. 108, no. 1-2, pp. 46-59.

17. Liu Y., Naidu R., Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma. 2011, vol.163, no. 1-2, pp. 1-12.

18. Liu Y., Naidu R. Hidden values in bauxite residue (red mud): recovery of metals. Waste Management. 2014, vol. 34, no. 12, pp. 2662-2673.

19. Leon’tev L.I., Vatolin I.A., Shavrin S.V., Shumakov I.S. Piro-metallurgicheskaya pererabotka kompleksnykh rud [Pyrometallur-gical processing of complex ores]. Moscow: Metallurgiya, 1997, 432 p. (In Russ.).

20. Lima M.S.S. etc. Red mud application in construction industry: review of benefits and possibilities. IOP Conference Series: Materials Science and Engineering. 2017, vol. 251, pp. 1-10.

21. Binnemans K., Jones P.T., Blanpain B., Gerven T.V., Pontikes Y. Towards zero-waste valorization of rare-earth-containing industrial process residues: A critical review. Journal of Cleaner Production. 2015, vol. 99, pp.17-38.

22. Bykhovskii L.Z., Arkhangel’skaya V.V., Tigunov L.P., Anufrie-va S.I. Skandii Rossii: perspektivy osvoeniya mineral’no-syr’evoi bazy i razvitiya proizvodstva [Scandium in Russia: Prospects for Development of Mineral Resources and Development of Production]. Moscow: VIMS “Mineral’noe syr’e”. Ser. geologo-ekonomi-cheskaya, no. 22, 2007, 45 p. (In Russ.).

23. Li L.Y. Properties of red mud tailings produced under varying process conditions. Journal of Environment Engineering. 1998, vol. 124, no. 3, pp. 254-264.

24. Li L.Y., Rutherford G.K. Effect of bauxite properties on the settling of red mud. International Journal of Mineral Processing. 1996, vol. 48, no. 3-4, pp. 169-182.

25. Pradhan J., Das S.N., Das J., Rao S.B., Thakur R.S. Characterization of Indian red muds and recovery of their metal values. Conference paper on: Annual meeting and exhibition of the Minerals, Metals and Materials Society 4-8 February, 1996, Anaheim, CA (United States), pp. 87-92.

26. Roach G.I.D., Jamieson E., Pearson N., Yu A.B. Effect of particle characteristics on the solids density of Bayer mud slurries. Chapter in Book: Light Metals, TMS, 2001, New Orleans, pp. 51-58.

27. Zhang P.X., Zhou X.L, Shangguan C.C. Recovering iron from red mud with high gradient magnetic separator. Applied Mechanics and Materials. 2014, vol. 644-650, pp. 5447-5450.

28. Fofana M., Kmet S., Jakabsky S. Treatment of red mud from alumina production by high-intensity magnetic separation. Magnetic and Electcal Separation. 1995, vol. 6, pp. 243-251.

29. Li Y., Chen H., Wang J. Research on red mud treatment by a circulating superconducting magnetic separator. Environmental Technology. 2014, vol. 35, no. 10, pp. 243-249.

30. Podgorodetskii G.S., Gorbunov V.B., Korovushkin V.V. etc. Structure of the red mud from Ural Aluminum Plant after heat treatment in reducing gas. Steel in Translation. 2012, vol. 42, no. 5, pp. 379-386. (In Russ.).

31. Chun T. J., Zhu D. Q., Pan J. etc. Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Canadian Metallurgical Quarterly. 2014, vol. 53, no. 2, pp. 183-189.

32. Zhu D.Q., Chun T.J., Pan J. etc. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. Journal of Iron and Steel Research International. 2012, vol. 19, no. 8, pp. 1-5.

33. Rao M.J., Zhuang J.Q., Li G.H. etc. Iron recovery from red mud by reduction roasting-magnetic separation. In: Proceedings of the symposia TMS Light Metals on March 3-7, 2013, San Antonio, Texas, USA. pp. 125-130.

34. Li G.H., Liu M.X., Rao M.J. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials. 2014, vol. 280, pp. 774-780.

35. Huang Z.C., Cai L.B., Zhang Y.B. etc. Reduction of iron oxides of red mud reinforced by Na2CO3 and CaF2 . Journal of Central South University (science and technology). 2010, vol. 41, no. 3, pp. 838-844. (in Chinese).

36. Liu W.C., Yang J.K., Xiao B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. Journal of Hazardous Materials. 2009, vol. 161, no. 1, pp. 474-478.

37. Liu W.C., Yang J.K., Xiao B. Recovering iron and preparing building material with residues from Bayer red mud. The Chinese journal ofnonferrous metals. 2008, vol. 18, no. 1, pp. 187-192. (in Chinese)

38. Grudinskii P.I., Dyubanov V.G., Zinoveev D.V., Zheleznyi M.V. Investigation of the processes of solid-phase recovery and iron grain growth in red mud in the presence of alkali metal salts. Metally. 2018, no. 6, pp. 1-8. (In Russ.).

39. Liu Y., Zhao B., Yang T. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochimica Acta. 2014, vol. 588, pp. 11-15.

40. Liu Y.J., Zuo K.S., Yang G. Recovery of ferric oxide from Bayer red mud by reduction roasting-magnetic separation process. Journal of Wuhan University of Technology Material Science Edition. 2016, vol. 31, no. 2, pp. 404-407.

41. Xue Q.-H., Chen Y.-W. Experimental study of iron recovering from high iron contained red mud by Bayer process. Kuangwu Yanshi journal of mineralogy and petrology. 2011, vol. 31, no. 4, pp. 7-12. (in Chinese)

42. Li X.B., Xiao W., Liu W. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Transactions of nonferrous metals society of China. 2009, vol. 19, pp. 1342-1347.

43. Liu W. Zhang L. etc. Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe. Minerals Engineering. 2012, vol. 39, pp. 213-218.

44. Bhoi B., Rajput P., Mishra C.R. Production of green direct reduced iron (DRI) from red mud of Indian Origin: A Novel Concept. Conference paper on: Proceedings of 35th International ICSOBA Conference, 2 - 5 October, 2017, Hamburg, Germany.

45. Cong Y.L., He Z.J., Zhang J.H., Pang Q.H. Experimental study on iron recovery by microwave carbon heat reduction-magnetic separation from red mud. Metalurgija. 2018, vol. 57, no. 1-2, pp.75-78.

46. Korneev V.I., Suss A.G., Tsekhovoi A.I. Krasnye shlamy. Svoistva, skladirovanie, primenenie [Red muds. Properties, disposal, application]. Moscow: Metallurgiya, 1991, 144 p. (In Russ.).

47. Utkov V.A., Nikolaev S.A., Sizyakov V.M., Kryukovskii V.A., Reb-rik I.I., Smola VI. Experience with mastering the preparation and use of bank sludge from alumina production. Metallurgist. 2008, vol. 52, no. 11-12, pp. 612-615.

48. Panagiotis M. Angelopoulos, Balomenos E., Taxiarchou M. Thin-layer modeling and determination of effective moisture diffusivity and activation energy for drying of red mud from filter presses. Journal of Sustainable Metallurgy. 2016, vol. 2, no. 4, P. 344-352

49. Lainer A.I., Kolenkova M.A. Some ways to rationalize the production of alumina. Izv. vuz. Tsvetnaya metallurgiya. 1958, no. 3. (In Russ.).

50. Shmigidin Yu.I., Rytsk L.M. Investigation of physical and filtration properties of red mud from imported bauxites processing. In: Issle-dovanie syr 'ya, apparatury i tekhnologii glinozemnogo proizvodst-va: sb. tr [Study of raw materials, equipment and technology of alumina production: Coll. of sci. papers]. St. Peterburg: Vsesoyuznyi alyuminievo-magnievyi institut, 1991, pp. 55-61. (In Russ.)

51. Grigor’ev G.D. Issledovanie tekhnologii kompleksnoi pererabotki vysokozhelezistogo alyuminievogo syr'ya: diss. ... kand. tekhn. nauk [Investigation of the complex processing technology of high-iron aluminum raw materials: Cand. Tech. Sci. Diss.]. Leningrad: 1971, 23 p. (In Russ.).

52. Arkhipov O.A., Volkova P.I., Pavlov F.N. Processing of red sludge for cast iron, self-depositing alumina slag and cement. Tsvetnaya metallurgiya. 1962, no. 20. (In Russ.).

53. Eremin N.I., Grigor’eva G.D., Kozlov V.M. Development of complex technology bauxite treatment. Izv. vuz. Tsvetnaya metallurgiya. 1975, no. 6, pp. 166-168. (In Russ.).

54. Miller V.Ya., Ivanov A.I., Utkov B.A. Behavior of sulfur and alkali during agglomeration of red mud. Zhurnal prikladnoi khimii. 1965, no. 6, pp. 57-60. (In Russ.).

55. Ivanov A.I. Issledovanie povedeniya shchelochi pri kompleksnoi pererabotke krasnykh shlamov alyuminievykh zavodov: diss. . kand. tekhn. nauk [Investigation of alkali behavior in the complex processing of red mud from aluminum plants: Cand. Tech. Sci. Diss.]. Leningrad: 1971, 23 p. (In Russ.).

56. Zelesskaya S.V. Desulfurization in the process of agglomeration and reduction melting of red mud agglomerates. In: Trudy po khimii i khimicheskoi tekhnologii: sb. tr. [Proceedings in Chemistry and Chemical Technology: Coll. of sci. papers]. Gorkii, 1969, Issue 2. (In Russ.).

57. Gagarina I.M., Meshcheryakova N.I., Yakovlev L.S. Production of half iron-rich pellets from red mud. Chernaya metallurgiya. Byul. in-ta “Chermetinformatsiya”. 1972, no. 19. (In Russ.).

58. Utkov V.A., Leont’ev L.I., Matyash V.G., Kiselev V.A., Nikolaev S.A., Petrov S. I. Investigation of the recovery of agglomerated red mud. In: Issledovanie novykh protsessov i apparatov v proiz-vodstve glinozema i poputnykh produktov: sb. tr. [Investigation of new processes and devices in the production of alumina and byproducts]. Leningrad: Vsesoyuznyi alyuminievo-magnievyi institut, 1985. (In Russ.).

59. Tanutrov I.N, Sviridova M.N., Savenya A.N. New technology for joint processing of technogenic waste. Metallurgiya tsvetnykh metallov. 2013, no. 1, pp. 21-26.

60. Ban T.E., Goetzman H.E. Gas-solid reaction. Patent US no. 657170, 1967.

61. Ning G., Zhang B., Liu C., Li S., Ye Y., Jiang M. Large-scale consumption and zero-waste recycling method of red mud in steel making process. Minerals. 2018, vol. 8, no. 102, pp. 1-16.

62. Antsiferov E.A., Shchadov I.M., Elkin K.S. etc. Sposob pererabotki shlamov glinozemnogo proizvodstva [Method of processing of alumina sludge]. Patent RF no. 2441927. MPK C22B7/04. Bulleten' izobretenii. 2012, no. 14. (In Russ.).

63. Golubev A.A., Gudim Yu.A. etc. Sposob pererabotki shlamov gli-nozemnogo proizvodstva [Method of pyrometallurgical processing of red mud]. Patent RF no. 2479648. MPK C22B7/00. 2013. (In Russ.).

64. Korshunov E.A., Burkin S.P., Loginov Yu.N. etc. Sposob pererabotki krasnogo shlama glinozemnogoproizvodstva [Method of processing of red mud from alumina production]. Patent RF no. 2245371. C21B3/04. 2005. (In Russ.).

65. Philippe K., Perry D. Method and system for processing red mud. Patent US no. 0113925 A1, 2011.

66. Balomnenos E., Kastritis D., Panias D., Paspaliaris I., Boufounos D. The Enexal bauxite residue treatment process: industrial scale pilot plant results. Chapter in Book: Light Metals. TMS, 2014, pp. 143-147.

67. Zinoveev D.V., Dyubanov V.G., Shutova A.V., Zinyaeva M.V. Recycling of red muds with the extraction of metals and special additions to cement. Russian Metallurgy (Metally). 2015, no. 1, pp. 19-21.

68. Borra C.R., Blanpain B., Pontikes Y., Binnemans K., Gerven T.V. Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. Journal of Sustainable Metallurgy. 2016, vol. 2, no. 1, pp. 28-37.

69. J. Hu, Y. Li, K. Wu, F. Liu, Q. Zhu, Y. Li. The exploration on synthesis of calcium aluminate and Fe-Si alloys using red mud and aluminum dross. Advanced Materials Research. 2010, vol. 97-101, no. 1, pp. 1104-1108.

70. Arkhipov O.A. Pilot plant tests of flow sheet of red mud complex treatment. In: Kompleksnaya pererabotka polimetallicheskogo syr'ya: sb. tr. [Complex processing of polymetallic raw materials]. Moskva: Metallurgiya, 1965. (In Russ.).

71. Kudinov B.Z., Bychin A.I., Leont’ev L.I., Kiselev V A., Fetisov V.B. Pilot plant tests of flow sheet of red mud metallurgical treatment in rotary kiln. Tsvetnye metally. 1967, no. 1, p. 46. (In Russ.).

72. Bychin A.I., Kudinov B.Z. Prospects for integrated metallurgical processing of red mud. Tsvetnye metally. 1963, no. 2, pp. 49-52. (In Russ.).

73. Eremin N.I. Methods of complex processing of red mud to produce metallic iron. In.: Kompleksnoe ispol'zovanie boksitov. Materialy soveshchaniya spetsialistov VAMI-FKI 25-27 sentyabrya 1970 g. Budapesht [Complex use of bauxite. Materials of the meeting of VAMI-FKI specialists, September 25-27, 1970, Budapesht]. (In Russ.).

74. Dobos R.G., Felfoldi Z. etc. Method for treatment of red mud. Patent US no. 557341, 1975.

75. Pervushin N.G., Pervushina V.P. Sposob polucheniya alyumokal 'tsievykh shlakov [Method for the production of alumina-calcium slags]. Patent RF no. 2356955. MPK C22B7/00. Bulleten' izobretenii. 2009, no. 15. (In Russ.).

76. Kaussen F., Sofras I.A., Friedrich B. Carbothermic reduction of red mud in an EAF and subsequent recovery of aluminium from the slag by pressure leaching in caustic solution. Conference paper in: Bauxite residue valorisation and best practices 5 - 7 October, 2015, Leven, Belgium.

77. 857Kaben F.M., Friedrich B. Phase characterization and thermochemical simulation of (landfilled) bauxite residue (“red mud”) in different alkaline processes optimized for aluminum recovery. Hydrometallurgy. 2018, vol. 176, pp. 49-61.

78. Pervushin N.G., Pervushina V.P. Sposob pererabotki krasnykh shla-mov [The method of red mud processing]. Patent RF no. 2428490. MPK C22B7/00. Bulleten’izobretenii. 2011, no. 25. (In Russ.).

79. Kapolyi L., Lazar F., Galauner B. etc. Method for processing of red mud. Patent US no. 204216, 1971.

80. Ercag E., Apak R. Furnace smelting and extractive metallurgy of red mud: recovery of TiO2 , Al2O3 and pig iron. Journal of chemical technology and biotechnology. 1997, no. 70, pp. 241-246.

81. Alkan G., Xakalashe B., Yagmurlu B., Kaussen F., Friedrich B. Conditioning of red mud for subsequent titanium and scandium recovery - a conceptual design study. World of Metallurgy - ERZ-METALL. 2017, vol. 70, no. 2, pp. 241-246.

82. Yagmurlu B., Alkan G., Xakalashe B. etc. Combined SAF smelting and hydrometallurgical treatment of bauxite residue for enhanced valuable metal recovery. Travaux 46. Proceedings of 35th International ICSOBA Conference 2 - 5 October. 2017, Hamburg, Germany.

83. Burkin S.P., Loginov YU.N. etc. Sposob pererabotki zhelezoglino-zemistogo syr’ya [The method of processing of iron-lean raw materials.]. Patent RF no. 2086659. MPK C21B11/00. Bulleten’ izobrete-nii. 1977, no. 22. (In Russ.).

84. Kozhevnikov G.N., Vodop’yanov A.G., Pan’kov V.A., Kuz’min B.P. Joint processing of bauxite and red mud. Tsvetnye metally. 2013, no. 12, pp. 36-39. (In Russ.).

85. He A., Zeng J. Direct preparation of low Ni-Cr alloy cast iron from red mud and laterite nickel ore. Materials and Design. 2017, vol. 115, pp. 433-440.

86. Shchukin V.S. Sposob utilizatsii krasnogo shlama-otkhoda glino-zemnogo proizvodstva [The method of recycling of red mud - waste of producing alumina]. Patent RF no. 2179590. MPK C22B7/04. Bulleten’izobretenii. 2002, no. 5. (In Russ.).

87. Romenets V.A., Valavin V. S., Usachev A.B. etc. Protsess Romelt [Romelt Process]. Moscow: MISiS, Ruda i Metally, 2005, 400 p. (In Russ.).

88. Gudim Yu.A., Golubev A.A. Effective ways to utilize Ural’s metallurgical waste. Ekologiya i promyshlennost’ Rossii. 2008, no. 12, pp. 4-8. (In Russ.).

89. Podgorodetskii G.S., Shiryaeva E.V., Gorbunov V.B., Kozlova O.N. Problems of effective processing of red mud. Ekologiya i promyshlennost’ Rossii. 2015, vol. 19, no. 12, pp. 46-53. (In Russ.).

90. Mukherjee P. S., Bhoi B., Mishra C.R., Dash R.R., Satapathy B.K., Kalidas J. Production of pig iron from NALCO red mud by application of plasma smelting technology. Chapter in Book: Light Metals. TMS. 2012, pp. 99-103.

91. Bhoi B., Behera P. R., Mishra C. R. Production of green steel from red mud: a novel concept. Conference paper on: 6th Int. symposium on high-temperature metallurgical processing 15-19 March, 2015, Walt Disney World, Orlando, Florida, USA.


Review

For citations:


Zinoveev D.V., Grudinskii P.I., Dyubanov V.G., Kovalenko L.V., Leont’ev L.I. Global recycling experience of red mud - a review. Part i: pyrometallurgical methods. Izvestiya. Ferrous Metallurgy. 2018;61(11):843-858. (In Russ.) https://doi.org/10.17073/0368-0797-2018-11-843-858

Views: 2580


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)