Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Synthesis of finely dispersed chromium diboride from nanofibrous carbon

https://doi.org/10.17073/0368-0797-2018-10-800-806

Abstract

The paper presents experimental data on synthesis of finely  dispersed powder of chromium diboride. Chromium diboride was  prepared by reduction of chromium oxide Cr2O3 with nanofibrous  carbon (NFC) and boron carbide in the induction furnace under argon atmosphere. NFC is a product of catalytic decomposition of light  hydro carbons. The main characteristic of a NFC is high specific surface area (~150,000 m2/kg), which is significantly higher than that  of soot (~50,000  m2/kg). The content of impurities in NFC is about  1  wt  %. Boron carbide used as a reagent is characterized by high dispersity (at the level of ~2  μm) and insignificant content of impurities – no more than 1.5  wt  %. Based on analysis of state diagram of  the Cr – B system, composition of the charge and upper temperature  limit of diboride formation reaction were determined for obtaining  chromium diboride in powder state. According to the results of thermodynamic analysis, the temperature of beginning of reaction for  chromium oxide Cr2O3 reduction by carbon and boron carbide was  determined at various CO pressures. Composition and characteristics  of chromium diboride were studied using X-ray phase analysis, inductively coupled plasma atomic emission spectrometry (AES-ISP),  scanning electron microscopy using local energy-dispersive X-ray  microanalysis (EDX), low-temperature adsorption of nitrogen, followed by determination of specific surface area by BET method,  sedi mentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase – chromium diboride  CrB2 . The content of impurities in chromium diboride does not exceed 2.5  wt  %. The powder particles were predominantly aggregated.  The average size of the particles and aggregates is equal to 7.95  μm  within a wide range of size distribution. The specific surface area of a  single-phase sample is 3600  m2/kg. Oxidation of chromium diboride  begins at a temperature of 430  °C and when the temperature reaches  1000  °C, the degree of oxidation is approximately 25  %. Optimum synthesis parameters are the ratio of reagents according to stoichiometry to obtain chromium diboride at a temperature of 1700  °C and  holding time of 20  min. It is shown that for this process nanofibrous  carbon is an effective reducing agent and that chromium oxide Cr2O3  is almost completely reduced to diboride CrB2 .

About the Authors

Yu. L. Krutskii
Novosibirsk State Technical University
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair  “Chemistry and Chemical Technology”


K. D. Dyukova
International Research Center for Thermal Physics and Energy, LLC
Russian Federation

Engineer of analytical Laboratory.

Novosibirsk



R. I. Kuz’min
Novosibirsk State Technical University
Russian Federation
Postgraduate of the Chair “Materials Science in Mechanical Engineering”


O. V. Netskina
Boreskov Institute of catalysis SB RAS; Novosibirsk State University
Russian Federation
Cand. Sci. (Chem.), Senior Researcher of the Laboratory of Hydride Investigation


A. E. Iorkh
Novosibirsk State Technical University
Russian Federation
Bachelor of the Chair “Materials Science in Mechanical Engineering”


References

1. Svoistva, poluchenie i primenenie tugoplavkikh soedinenii: spravochnik [Properties, production and application of refractory compounds: Reference book]. Kosolapova T.Ya. ed. Moscow: Metallurgiya, 1986, 928 p. (In Russ.).

2. Artem’ev A.A., Sokolov G.N., Dubtsov Yu.N., Lysak V.I. Formation  of a composite structure of wear-resistant weld metal with boride  hardening. Izv. vuz. Poroshkovaya metallurgiya i funktsional᾽nye pokrytiya. 2014, no.2, pp. 44 –48. (In.Russ.).

3. Jordan L.R., Betts A.J., Dahm K.L., Dearnley P.A., Wright G.A. Corrosion and passivation mechanism of chromium diboride coatings on  stainless steel. Corrosion Science. 2005, vol. 47, pp.  1085–1096.

4. Dearnley  P.A.,  Schellewald  M.,  Dahma  K.L.Characterisation  and wear response of metal-boride coated WC–Co. Wear. 2005,  vol.  259, pp. 861–869.

5. Yamada S., Hirao K., Yamauchi Y., Kanzaki S. Mechanical and  electrical  properties  of  B4C-CrB2  ceramics  fabricated  by  liquid  phase sintering. Ceramics International. 2003, vol. 29, pp. 299–304.

6. Makarenko G.N., Krushinskaya L.A., Timofeeva I.I., Matsera V.E.,  Vasil’kovskaya M.A., Uvarova I.V. Features of formation of diborides of transition metals of IV-VI groups in the process of mechanochemical synthesis. Poroshkovaya metallurgiya. 2014, no. 9/10,  pp. 24–32. (In Russ.).

7. Yeh C.L., Wang H.J. Preparation of borides in Nb–B and Cr–B  systems  by  combustion  synthesis  involving  borothermic  reduction of Nb2O5 and Cr2O3 . Journal of Alloys and Compounds. 2010,  vol.  490, pp. 366–371.

8. Gorbunov A.E.  Carbon-thermal method of obtaining borides of  chromium, molybdenum and zirconium. Poroshkovaya Metallurgiya. 1966, no. 11, pp. 52–56. (In Russ.).

9. Torabi O., Golabgir M.H., Tajizadegan H. An investigation on the  formation mechanism of nano CrB2 powder in the Mg-B2O3-Cr2O3  system. International Journal of Refractory Metals and Hard Materials. 2015, vol. 51, pp. 50–55.

10. Karasev A.I.  Preparation of powders of technical borides of titanium, zirconium, chromium and tungsten by borocarbide method.  Poroshkovaya Metallurgiya. 1973, no. 10. pp. 1–5. (In Russ.).

11. Kislyi P.S., Kuzenkova M.A., Bodnaruk N.I., Grabchuk B.L. Karbid bora [Boron carbide]. Kiev: Naukova Dumka, 1988, 216 p. (In Russ.).

12. Sonber J.K., Murthy T. S. R. Ch., Subramanian C., Kumar S., Fotedar R.K., Suri A.K. Investigation on synthesis, pressureless sintering and hot pressing of chromium diboride. International Journal of Refractory Metals & Hard Materials. 2009, vol. 27, pp. 912–918.

13. Novye materialy i tekhnologii. Ekstremal’nye tekhnologicheskie protsessy [New materials and technologies. Extreme technological  processes]. Zhukov M.F. ed. Novosibirsk: Nauka, Siberian Branch,  1992, 183 p. (in Russ.).

14. Serebryakova T.I, Neronov V.A., Peshev P.D. Vysokotemperaturnye boridy [High-temperature borides]. Moscow: Metallurgiya, Chelyabinsk Branch, 1991, 368 p. (In Russ.).

15. Kuvshinov  G.G.,  Mogilnykh  Yu.L.,  Kuvshinov  D.G.,  Yermakov  D.Yu., Yermakova M.A., Salanov A.N., Rudina N.A. Mechanism of porous filamentous carbon granule formation on catalytic  hydrocarbon decomposition. Carbon. 1999. vol. 37, pp. 1239–1246. 

16. Krutskii Yu.L., Bannov A.G., Sokolov V.V. Synthesis of highly dispersed boron carbide from nanofibrous carbon. Nanotechnologies in Russia. 2013, vol. 8, no. 3/4, pp. 191–198.

17. Krutskii Yu.L., Bannov A.G., Antonova E.V., Sokolov V.V., Pichugin A.Yu., Maksimovskii E.A., Krutskaya T.M., Netskina O.V., Bataev  I.A. Synthesis of fine dispersed titanium diboride from nanofibrous carbon. Ceramics International. 2017, vol. 43. pp. 3212–3217.

18. Samsonov G.V., Vinitskii I.M. Tugoplavkie soedineniya: spravochnik [Refractory compounds: Reference book]. Moscow: Metallurgiya, 1976, 560 p. (In Russ.).

19. Fiziko­khimicheskie svoistva okislov: spravochnik  [Physics  and  chemical properties of oxides: Reference book]. Samsono G.V. ed.  Moscow: Metallurgiya, 1978, 472 p. (In Russ.). 

20. Svoistva elementov: spravochnik [Properties of elements: Reference book]. Drits M.E. ed. Moscow: Metallurgiya, 1985, 672 p.  (in Russ.). 

21. West A.R. Solid State Chemistry and Its Applications. Part I. Chiche ster, John Wiley, 1984, 734 p.

22. Blott S.J., Pye K. Gradistat: a grain size distribution and statistics  package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms. 2001, vol. 26, pp. 1237–1248.

23. Voitovich R.F. Okislenie karbidov i nitridov [Oxidation of carbides  and nitrides]. Kiev: Naukova Dumka, 1981, 192 p. (In Russ.).


Review

For citations:


Krutskii Yu.L., Dyukova K.D., Kuz’min R.I., Netskina O.V., Iorkh A.E. Synthesis of finely dispersed chromium diboride from nanofibrous carbon. Izvestiya. Ferrous Metallurgy. 2018;61(10):800-806. (In Russ.) https://doi.org/10.17073/0368-0797-2018-10-800-806

Views: 644


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)