Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubbling process. Report 2. Reducing agent – a mixture OF Н2 – Н2О

https://doi.org/10.17073/0368-0797-2018-10-794-799

Abstract

A number of technologies in ferrous and non-ferrous metallurgy  are based on bubbling processes. For prediction of melting parameters  including the reduction of metals from oxide melt by a reducing gas  in a bubbling layer in industrial aggregates, a thermodynamic modeling technique is proposed based on calculation of the equilibrium in  oxide-melt-metal-gas system. Originality of the technique is that equilibrium is determined for each unit dose of gas introduced into the  working body, with the contents of oxides of metals being reduced in  each subsequent design cycle equal to the equilibrium in the previous  one. For the analysis NiO (1.8  %) – FeO (17.4  %) – CaO (13.5  %)  –  MgO  (1.9  %) – SiO2 (58.0  %) – Al2O3 (7.4  %) oxide system was  taken, closely corresponding to composition of oxidized nickel ore.  The ratio of Н2О/Н2 in gas mixture varies between 0 and 1.0. (1823  K),  amount and composition of formed metal (ferronickel), as well as the  indices (the ratio of slag and metal, the degree of reduction of metals)  are important in implementation of the process under commodity conditions. The increase in hydrogen consumption monotonously reduces  the content of nickel oxide in the melt, while the content of iron oxide  initially increases, and then decreases.  When H2 is introduced in an  amount of about 50 m3 per ton of the melt, the content of nickel oxide  in it is reduced to 0.017  %, and of iron oxide to 16.7  %. Resulting ferronickel contains 61  % Ni, ratio of slag and metal – 42  units. Further  increase in H2 consumption leads to preferential iron reduction. An increase in H2O/H2 ratio worsens the results of reduction of metals from  the melt: decrease in degree of reduction of nickel and iron, increase  in nickel content in the alloy, and the ratio of slag and metal. However,  even with a H2 / H2O ratio of 1.0, which corresponds to 50  % of H2O  in the gas mixture, reduction process does not stop. For comparison,  the work presents data on change in content of nickel and iron oxides,  when metals are restored from similar melts with carbon monoxide.  At a nickel recovery rate of 98  %, indicators are close in case of using  both H2 and CO. However, to achieve them, it is required 2.5  times less hydrogen, and 1.36 times less mixture in which H2O/H2  =  0.11  (H2  –  90  %) than carbon monoxide.

About the Authors

A. S. Vusikhis
Institute of Metallurgy UB RAS
Russian Federation

Cand. Sci. (Eng.), Senior Researcher.

Ekaterinburg



L. I. Leont’ev
Scientific Council on Metallurgy and Metal Science of Russian Academy of Sciences (Department of Chemistry and Material Sciences); Baikov Institute of Metallurgy and Materials Science; National University of Science and Technology “MISIS” (MISIS)
Russian Federation

Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher.

Moscow



D. Z. Kudinov
Institute of Metallurgy UB RAS
Russian Federation

Cand. Sci. (Eng.), Senior Researcher.

Ekaterinburg



E. N. Selivanov
Institute of Metallurgy UB RAS
Russian Federation

Dr. Sci. (Eng.), Head of the Laboratory of Pyrometallurgy of Nonferrous Metals.

Ekaterinburg



References

1. Romenets  V.A.,  Valavin  V.S.,  Usachev  A.B.  Protsess Romelt [Romelt Process]. Romenets V.A. ed. Moscow: Ruda i metally,  2005, 399 p. (In Russ.). 

2. Vanyukov A.V., Bystrov V.P., Vaskevich A.D. Plavka v zhidkoi vanne [Melting in a liquid bath]. Vanyukov A.V. ed. Moscow:  Metal lurgiya, 1986, 259 p. (In Russ.).

3. Mechev V.V., Bystrov V.P., Tarasov A.V. etc. Avtogennye protsessy v tsvetnoi metallurgii [Autogenous processes in non-ferrous metallurgy]. Moscow: Metallurgiya, 1991, 413 p. (In Russ.).

4. Mark E. Schlesinger, Matthew J. King, Kathryn C. Sole, William G.  Davenport. Extractive Metallurgy of Copper. Elsevier, 2011, 481 p.

5. Vignes A. Extractive Metallurgy 3: Processing Operations and Routes ISTE Ltd. John Wiley & Sons, Inc., 2011, 352 p.

6. Bakker M.L., Nikolic S., Mackey P.J. ISASMELTTM TSL – Applications for nickel. Mineral Eng. (An International Journal Devoted to Innovation and Developments in Mineral Processing and Extractive Metallurgy). 2011, vol. 24, no. 7, pp. 610–619.

7. Bakker M.L., Nikolic S., Burrows A.S. ISACONVERT TM – continuous converting of nickel/PGM mattes. Alvear G.R.F.J.S.Afr. Inst. Mining and Met. 2011, vol. 111, no. 10, pp. 285–294.

8. Kovgan  P.A., Volkov V.A.,  Kozyrev V.V.  etc.  Environmentally  friendly technology of non-coke melting of oxidized nickel ores.  Tsvet naya metallurgiya. 1994, no. 11-12, pp. 16–17. (In Russ.).

9. Lazarev V.I., Lazarev V.I., Spesivtsev A.V., Bystrov V.P. Development of Vanyukov smelting with depletion of slag. Tsvetnye metally.  2000, no. 6, pp. 33–36. (In Russ.).

10. Kovgan P.A., Abuov M.G., Edil’baev A.I. Perspective technologies  of processing of poor oxidized nickel ores. Tsvetnye metally. 2008,  no. 2, pp. 43–45. (In Russ.).

11. Tsymbulov  L.B.,  Knyazev  M.V.,  Tsemekhman  L.Sh.,  Kudabaev  E.A., Golovlev Yu.I. Analysis of various variants of the technological scheme of processing of oxidized nickel ore into ferronickel  with the use of two-zone Vanyukov furnace. Tsvetnye metally. 2010,  no. 10, pp. 15–21. (In Russ.).

12. Bystrov V.P., Fedorov A.N., Shchelkunov V.V., Bystrov S.V. Use of  Vanyukov process for the processing of oxidized nickel ores. Tsvetnye metally. 2011, no. 8-9, pp. 155–158. (In Russ.).

13. Romenets V.A., Valavin V.S., Pokhvisnev Yu.V. Technological assessment of the Romelt process in the classic and two-zone variants.  Metallurgist. 2014, vol. 58, no. 1-2, pp. 20–27.

14. Dosmukhamedov  N.K.,  Zholdasbai  E.E.,  Nurlan  G.B.,  Seitkulova  Zh.B. Study of the behavior of non-ferrous metals, iron and  arsenic in reducing depletion of copper-rich slag. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2016, no. 1  (p.  4), pp. 486–491. (In Russ.).

15. Vusikhis A.S., Dmitriev A.N. Investigation of the processes of reduction of metal oxides from the melt by reducing gas in the bubbled layer. Vestnik UGTU­UPI. 2004, no. 15 (45), Part 1, pp. 93–95. (In  Russ.).

16. Moiseev G.K., Vyatkin G.P. Termodinamicheskoe modelirovanie v neorganicheskikh sistemakh: Uchebnoe posobie [Thermodynamic  modeling  in  inorganic  systems].  Chelyabinsk:  YuUrGU,  1999,  256  p. (In Russ.).

17. Sohn H.Y. Process modeling in non-ferrous metallurgy. In: Treatise on Process Metallurgy: Industrial Processes. Ed. by S. Seetharaman. Chapter 2.4. Oxford: Elsevier Ltd., 2014, pp. 701–838. 

18. Pickles C.A., Harris C.T., Peacey J., Forster J. Thermodynamic  analysis of the Fe-Ni-Co-Mg-Si-O-H-S-C-Cl system for selective  sulphidation of a nickeliferous limonitic laterite ore. Miner. Eng. An International Journal Devoted to Innovation and Developments in Mineral Processing and Extractive Metallurgy. 2013, vol. 54,  pp.  52–62. 

19. Komkov A.A., Ladygo E.A., Bystrov V.P. Thermodynamic analysis  of reducing depletion of slags rich in copper and nickel. Izvestiya Vysshikh Uchebnykh Zavedenij. Tsvetnaya Metallurgiya.  2002,  no.  4, pp. 7–14. (In Russ.).

20. Pickles C.A. Thermodynamic analysis of the selective carbothermic  reduction of electric arc furnace dust. Journal of Hazardous Materials. 2008, vol. 150, pp. 265–278.

21. Vusikhis.A.S., Kudinov D.Z., Leont’ev L.I. Modeling of the kinetics of reduction of nickel from multicomponent oxide melt with  hydrogen in barotrauma layer. Journal of physical chemistry. 2008,  vol. 82, no. 11, pp. 2035–2038. 

22. Dmitriev A.N., Vusikhis A.S., Sitnikov V.A., etc.Thermodynamic  modeling of iron oxide reduction by hydrogen from the B2O3CaO-FeO melt in bubbled layer. Israel Journal of Chemistry. 2007,  vol.  47, no. 3-4, pp. 299– 302.

23. Vusikhis A.S., Kudinov D.Z., Leont’ev L.I. Modeling of kinetics of  joint reduction of iron and nickel from multicomponent oxide melt  by hydrogen in the bubbled layer. Journal of physical chemistry.  2008, vol. 82, no. 11, pp. 2030–2034.  24. Vusikhis A.S., Leont’ev L.I., Kudinov D.Z., Selivanov E.N. Thermodynamic modeling of nickel and iron reduction from multicomponent  silicate melt in bubbling process. Report 1. Reducing agent  – a mixture of CO – CO2 . Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2018, vol. 61, no. 9, pp. 731–736. (In Russ.).


Review

For citations:


Vusikhis A.S., Leont’ev L.I., Kudinov D.Z., Selivanov E.N. Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubbling process. Report 2. Reducing agent – a mixture OF Н2 – Н2О. Izvestiya. Ferrous Metallurgy. 2018;61(10):794-799. (In Russ.) https://doi.org/10.17073/0368-0797-2018-10-794-799

Views: 1181


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)