Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Wear of sintered composites based on bearing steel at boundary friction with current collection against copper

https://doi.org/10.17073/0368-0797-2018-10-780-786

Abstract

The possibility of creating a composite of steel-graphite by  sintering using the simplest technology has been studied at temperature lower than 1000  °C in the electric furnace without vacuum.  The main research aim was to estimate ability of such composite  to show high wear resistance at sliding against copper counterbody  under the influence of electric current with a contact density higher  than 100  A/cm2. Powder steel has been obtained by recycling of  grinding wastes of bearing production. Composites had low mechanical properties and high specific electric resistance. The high  through porosity was shown by optical metallography. Tribotechnical loading of composites has been carried out according to the  contact scheme “pin-on-ring” with a sliding velocity of 5  m/s and  with a contact pressure of 0.09  MPa. It has been noted that dry  friction of these composites has caused transfer layer emergence  on the sliding surface of copper counterbody. As a  result there was  reduction of sliding electric contact conductivity and increase in  the general copper sliding surface roughness. Impregnation by industrial oil of composites porous framework led to significant increase in specific surface contact electric conductivity and to linear  wear intensity decrease comparing with the same characteristics of  dry contact. Catastrophic wear under these conditions began at the  contact current density of 150  –  200  A/cm2. It has been shown that  the placing of lead plate and composite in the specimen holder and  implementation of their joint sliding under the influence of electric  current caused additional contact electric conductivity increase and  wear intensity decrease to values of 3  –  11  μm/km at the contact  current density about 250  A/cm2. Catastrophic wear in the presence  of a lead plate and industrial oil in contact zone began at the contact  current density of 250  –  300  A/cm2. Contact characteristics dependence on graphite concentration was not evidently observed. It has  been established that every friction mode did not lead to copper  sliding surface deterioration. It was concluded that the use of the  restored bearing steel has the perspective for creation of current  collection materials demonstrating high wear resistance under the  influence of electric current of high contact density.

About the Authors

M. I. Aleutdinova
Institute of Strength Physics and Materials Science, SB RAS; Seversk Technological Institute, National Research Nuclear University
Russian Federation

Cand. Sci. Eng., Research Associate.

Seversk, Tomsk Region



V. V. Fadin
Institute of Strength Physics and Materials Science, SB RAS
Russian Federation

Cand. Sci. Eng., Assist. Professor, Senior Researcher.

Tomsk



K. A. Aleutdinov
National Research Tomsk Polytechnic University
Russian Federation

Student.

Tomsk



References

1. Ibatullin I.D. Kinetika ustalostnoi povrezhdaemosti i razrusheniya poverkhnostnykh sloev: monografiya [Kinetics of fatigue damage ability  and  destruction  of  surface  layers].  Samara:  Samar.  gos.  tekhn. un-t, 2008, 387 p. (In Russ).

2. Rynio C., Hattendorf H., Klöwer J., Eggeler G. The evolution of  tribolayers  during  high  temperature  sliding  wear.  Wear.  2014,  vol.  315, pp. 1–10. 

3. Wang X., Wei X., Hong X., Yang J., Wang W. Formation of sliding  friction-induced deformation layer with nanocrystalline structure in  T10 steel against 20CrMnTi steel. Applied Surface Science. 2013,  vol. 280, pp. 381–387.

4. Fedorchenko I.M., Pugina L.I. Kompozitsionnye spechennye antifriktsionnye materialy [Composite sintered antifriction materials].  Kiev: Naukova dumka, 1980, 404 p. (In Russ).

5. Antsiferov V.N., Bobrov G.V., Druzhinin L.K. etc. Poroshkovaya metallurgiya i napylennye pokrytiya: Ucheb. dlya vuzov [Powder  metallurgy and sprayed coatings]. Moscow: Metallurgiya, 1987,  792 p. (In Russ).

6. Ma X.C., He G.Q., He D.H, Chena C.S., Hua Z.F. Sliding wear  behavior of copper-graphite composite material for use in maglev  transportation system. Wear. 2008, vol. 265, pp. 1087–1092.

7. He D.H., Manory R.A. Novel electrical contact material with improved self-lubrication for railway current collectors. Wear. 2001,  vol. 249, pp. 626‒636.

8. Zozulya  V.D.  Ekspluatatsionnye svoistva poroshkovykh podshipnikov [Operational properties of powder bearings]. Kiev: Naukova dumka, 1989, 287 p. (In Russ).

9. Zhang W., Zhang D., Le Y., Li L., Ou B. Fabrication of surface selflubricating composites of aluminum alloy. Applied Surface Science.  2008, vol. 255, pp. 2671–2674.

10. Braunovic M., Konchits V.V., Myshkin N.K. Electrical contacts. Fundamentals, applications and technology.  Boca  Raton:  CRC  Press, 2006, 672 p.

11. Senouci A., Zaidi H., Frene J., Bouchoucha A., Paulmier D. Damage of surfaces in sliding electrical contact copper/steel. Applied Surface Science, 1999, vol. 144-145, pp. 287–291. 

12. Argibay N., Sawyer W. G. Low wear metal sliding electrical contacts at high current density. Wear, 2012, vol. 274-275, pp. 229–237. 

13. Kwok C.T., Wong P.K., Man H.C., Cheng F.T. Sliding wear and  corrosion resistance of copper-based overhead catenary for traction systems. IJR. International Journal of Railway (Korea). 2010,  vol.  3, no. 1, pp. 19‒27.

14. Berent V.Ya. Materialy i svoistva elektricheskikh kontaktov v ustroistvakh zheleznodorozhnogo transporta [Materials and properties  of electric contacts in devices of railway transport]. Moscow: Intekst, 2005, 408 p. (In Russ).

15. Aleutdinov K.A., Aleutdinova M.I., Fadin V.V. Influence of counterbody structure on characteristics of sliding electric contact of  metal composites. In: Sb. trudov Mezhdunarodnoi konferentsii “Materialy i tekhnologii novykh pokolenii v sovremennom materialovedenii” [Coll. of papers of the Int. Conf. “Materials and Technologies  of New Generations in Modern Materials Science”]. Tomsk, Izd-vo  Tomskogo politekhnicheskogo universiteta, 2016, pp. 231‒236. (In  Russ).

16. Kovalchenko A.M., Blau P.J., Qu J., Danyluk S. Scuffing tendencies  of different metals against copper under non-lubricated conditions.  Wear. 2011, vol. 271, pp. 2998–3006.

17. Aleutdinova M.I., Fadin V.V., Aleutdinov K.A. Structure and wear  of powder bearing steel at lubricant sliding with current collection on  copper. Perspektivnye materialy. 2017, no. 11, pp. 55‒63. (In Russ).

18. Aleutdinova M.I., Borisov M.D., Fadin V.V., Kochepasov I.I., Kolubayev A.V. Structure and mechanical properties of powder materials  on base of bearing steel. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2001, no. 2, pp. 31‒34. (In Russ).

19. Fadin V.V., Aleutdinova M.I., Potekaev A.I., Kulikova O.A. The surface layer states in metallic materials subjected to dry sliding and electric current. Russian Physics Journal. 2017, vol. 60 (5), pp.  908‒914.

20. Chichinadze A.V., Khovanskii V.N., Prezhentseva N.P. Some features of settlement and experimental assessment of tribotechnical characteristics of large current sliding electric contacts. Trenie i iznos. 1992, no. 13(1), pp. 138‒144 (In Russ).


Review

For citations:


Aleutdinova M.I., Fadin V.V., Aleutdinov K.A. Wear of sintered composites based on bearing steel at boundary friction with current collection against copper. Izvestiya. Ferrous Metallurgy. 2018;61(10):780-786. (In Russ.) https://doi.org/10.17073/0368-0797-2018-10-780-786

Views: 478


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)