Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Evaluation of uneven distribution of charge materials at blast furnace

https://doi.org/10.17073/0368-0797-2018-10-766-773

Abstract

In various industries, the uneven distribution of material and  energy resources significantly affects stability of the technological  process and reduces the quality of products. In particular, in the blastfurnace production, the uneven distribution of charge materials and  the temperature of gases significantly affect technical and economic  performance of the furnace. The analysis of bibliographic sources  has shown that for the estimation of unevenness various coefficients  were generally used, taking into account the variability of material and  ener gy resources in the production process, the coefficient of variation  introduced by K. Pierson in 1895 was the most widespread. It was determined the relation between the square of the coefficient of variation of V2 and the value  X2= (n(N-1))/N*V2 according to which the random  variable V2 has  X2k a distribution with k degrees of freedom, k  =  N  –  1,  where n  =  n1 + n2 + … + nN , ni is the value of the i-th measurement,  i = 1, N – is the number of measurements. The proposed method  for estimating the unevenness is based on statistics  X2k,  and X2 also  introduced by K. Pearson in 1901 and 1904, respectively. The latter  was intended to test the H0-correspondence of the empirical and statistical distribution. The method for determining the circumferential  irregularity in the distribution of materials and gases in a blast furnace  is based on the consistency of X2k and X2 of Pearson statistics, using  the so-called quantile factor q, if in calculations of X2 the valu es   of the ,physical quantities themselves are used, by analogy, not the frequency  of the measured quantities. In this method, X2-statistic after correction  was used to determine the measure of deviation  (p) from the uniform  distribution, i.e. the unevenness coefficientp = p(X2/k), p  є  (0; 1 – α),   X2k =  X2max= qX2 was calculated. In order to reconcile X2 and  X2k statistics with the measurements of the physical quantities (temperature,  pressure) or materials (granular, gaseous), the X2-statistic must be adjusted so that  qX2max ≈ X2k (α), X2max с(X21,..., Х2M )where M – is the  number of experiments for which the values   of X2-statics were determined,  X2k (α) – the upper α-quantile of  X2k  statistic, q – the quantile multiplier, introduced for the correction of the X2-statistic values,  X2max–  the maximum value of X2-statistic is admissible for determining the  measure of non-uniformity.The method was tested to evaluate the relative non-uniformity of the loaded charge components and the distribution of peripheral temperature at blast furnaces of OJSC “MMK” with  volume of 2014 and 1370 m3. The influence of the sequence of a set of  charge components in the hopper of a bell-less charging device of the  furnace on the coefficient of circumferential unevenness (p) and the  technical and economic parameters of melting was revealed.

About the Authors

S. K. Sibagatullin
Magnitogorsk State Technical University named after G.I. Nosov
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair “Metallurgy Technology and Casting Processes".

Magnitogorsk, Chelyabinsk Region



A. S. Kharchenko
Magnitogorsk State Technical University named after G.I. Nosov
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Metallurgy Technology and Casting Processes".

Magnitogorsk, Chelyabinsk Region



L. D. Devyatchenko
Magnitogorsk State Technical University named after G.I. Nosov
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair of Mathematics.

Magnitogorsk, Chelyabinsk Region



References

1. Tonkikh D.A., Karikov S.A., Tarakanov A.K., Koval’chik R.V., Kostomarov A.S. Improving the charging and blast regimes on blast furnaces at the Azovstal metallurgical combine. Metallurgist. 2014, vol. 57, no. 9-10, pp. 797-803.

2. Bol’shakov V.I., Shuliko S.T., Lebed’ V.V., Semenov Yu.S., Dmi-trenko K.A., Popov V.N. Distributing of blowing on a circumference in a high furnace by volume of 5000 during its work. Metal-lurgicheskaya i gornorudnaya promyshlennost’. 2005, no. 2, pp. 10-12. (In Russ.).

3. Sibagatullin S.K., Kharchenko A.S., Beginyuk V.A. Processing solutions for optimum implementation of blast furnace operation. Metallurgist. 2014, vol. 58, no. 3-4, pp. 285-293.

4. Andronov V.N., Belov Yu.A. Evaluation of efficiency of blast and gas distribution among tuyeres. Stal’. 2002, no. 9, pp. 15-17. (In Russ.).

5. Listopadov V.S., Dmitrienko K.A., Paranosenkov A.A. etc. Investigation of the influence of flow distribution on the evenness of material descent along the circumference of blast furnace. Metal-lurgicheskaya i gornorudnaya promyshlennost’. 2008, no. 6, pp. 11-15. (In Russ.).

6. Sibagatullin S.K., Kharchenko A.S. Polinov A.A. etc. Stabilization of the ratio of natural gas and blast flows through blast furnace tuyeres. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2014, no. 1 (14), pp. 23-25. (In Russ.).

7. Bol’shakov V.I. Scientific grounding of strategy for controlling the burden distribution. Stal’. 2002, no. 4, pp. 37-42. (In Russ.).

8. Storozhik D.A., Grebenyuk V.M., Tylkin M.A. Izgotovlenie i ekspluatatsiya zagruzochnykh ustroistv domennykh pechei [Manufacture and operation of charging devices of blast furnaces]. Moscow: Metallurgiya, 1973, 319 p. (In Russ.).

9. Bol’shakov V.B., Roslik N.A., Shutylev F.M., Kotov A.P. Assessment of circumferential burden distribution at blast furnace with trough belless top. Stal’. 1993, no. 2, pp. 11-14. (In Russ.).

10. Bol’shakov V.B., Roslik N.A., Shutylev F.M. Gas distribution control in blast furnace equipped with belless charging device. Stal’. 1995, no. 7, pp. 15-19. (In Russ.).

11. Sibagatullin S.K., Kharchenko A.C. Identification of an efficient sequence of charging components of raw materials into hopper of the bell-less charging device of chute type by physical modeling. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo uni-versiteta im. G.I. Nosova. 2015, no. 3, pp. 28-34. (In Russ.).

12. Bol’shakov V.I., Lebed’ V.V., Zherebetskii A.A. Improvement of management of the distribution of charge on the blast furnace equipped with a bell-less charging device. In: Fundamental’nye i prikladnye problemy chernoi metallurgii: Sb. nauchn. tr. [Fundamental and applied problems of ferrous metallurgy: Coll. of Sci. Papers]. Issue 22. Dnepropetrovsk: IChM NAN Ukrainy, 2010, pp. 18-26. (In Russ.).

13. Bol’shakov V.I., Murav’eva I.G., Semenov Yu.S., Shuliko S.T. Estimation of the circumferential distribution of charge in a blast furnace by a radar profiler. In: Fundamental’nye i prikladnye problemy chernoi metallurgii: Sb. nauchn. tr. [Fundamental and applied problems of ferrous metallurgy: Coll. of Sci. Papers]. Issue 17. Dnepropetrovsk: IChM NAN Ukrainy, 2008, pp. 74-85. (In Russ.).

14. Makarov Yu.I. Apparaty dlya smesheniya sypuchikh materialov. Monografiya. [Apparatus for mixing of loose materials: Monograph]. Moscow: Mashinostroenie, 1973, 216 p. (In Russ.).

15. Sibagatullin S.K., Kharchenko A.S., Logachev G.N. The rational mode of nut coke charging into the blast furnace by compact trough-type charging device. International Journal of Advanced Manufacturing Technology. 2016, vol. 86, pp. 531-537.

16. Voronin V.V., Adigamov K.A., Petrenko S.S., Sizyakin R.A. Criteria and methods for assessing the quality of loose materials mixing. Inzhe-nernyi vestnik Dona. 2012, vol. 23, no. 4-2 (23), pp. 36. (In Russ.).

17. Seber G.A. Multivariate Observations. New York: Wiley, 1984, 686 p.

18. Spath H. Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples. Translated by J. Goldschmidt. New York: Halsted Press, 1985.

19. Gorban A.N., Zinovyev A.Y. Principal Graphs and Manifolds. Part. 2. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. Emilio Soria Olivas et al. (eds), IGI Global, Hershey, PA, USA, 2009, pp. 28-59.

20. Tverdokhlebova S.V., Spiridonova I.M. Sposob opredeleniya ravnomernosti raspredeleniya legiruyushchikh elementov v spla-vakh [Method for determining the uniformity of distribution of alloying elements in alloys]. Certificate of authorship no. 1651172 RF. Byulleten’ izobretenii. 1989, no. 19. (In Russ.).

21. Matematika: Entsiklopediya [Mathematics: Encyclopedia]. Prokhorov Yu.V. ed. Moscow: Bol’shaya Rossiiskaya entsiklopediya, 2003, 845 p. (In Russ.).

22. Devyatchenko L.D. Tablitsy sopryazhennosti. Vvedenie v analiz sootvetstvii [Contingency tables. Introduction to the analysis of correspondences]. Magnitogorsk: MGTU im. G.I. Nosova, 2008, 127 p. (In Russ.).

23. Kendall Maurice G., Stuart A. The advanced theory of statistics. 2nd edition. Hafner,1963. (Russ.ed.: Kendall M., Stuart A. Statis-ticheskie vyvody i svyazi. Moscow: Nauka, 1976, 736 p.).

24. Bol’shev L.N., Smirnov N.V. Tablitsy matematicheskoi statistiki [Tables of mathematical statistic]. Moscow: Nauka, 1983, 416 p. (In Russ.).

25. Matematicheskaya entsiklopediya. Vol. 5 [Mathematical encyclopedia]. Vinogradov I.M. ed. Moscow: Sovetskaya Entsiklopediya, 1248 p. (In Russ.).


Review

For citations:


Sibagatullin S.K., Kharchenko A.S., Devyatchenko L.D. Evaluation of uneven distribution of charge materials at blast furnace. Izvestiya. Ferrous Metallurgy. 2018;61(10):766-773. (In Russ.) https://doi.org/10.17073/0368-0797-2018-10-766-773

Views: 783


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)