DEPTH STRUCTURE OF WEAR RESISTANCE COATING ON STEEL OBTAINED BY ELECTRIC ARC METHOD
https://doi.org/10.17073/0368-0797-2015-2-121-126
Abstract
It has been shown by scanning electron microscopy that the formation of the deposit facing on steel surface is accompanied by the creation of a multilayer structure including a layer of welding, transition layer and layer of the heat-affected zone. Crystallization of facing is accompanied by the formation of a columnar structure, which presents alternating layers of two types of thickness 8 – 10 microns. Layers of the first type are characterized by a lamellar structure oriented perpendicular to the substrate surface, the thickness of the separating plates and intermediate layers in the layer varies in the range of 50 – 100 nm. Layers of the second type have a structure of lamellar and globular type. On a distance from the surface facing the lamellar structure of the first type layers degenerates and completely disappears on the border with the transitional layer. The globules sizes vary in the range of 1.5 – 3.0 microns, globules are fragmented. The gradient nature of the structure is identified in the transition layer and the heat-affected zone also. It was established that the boundary facing – steel is in elastically stressed state, formed as a consequence of ultra-high heating and cooling velocities; this was evidenced by the presence of micropores and microcracks, located line-by-line, as well as by extended intermediate layers of the second phase.
About the Authors
S. V. RaikovRussian Federation
Cand. Sci. (Eng.), Senior Researcher, Assist. Professor of the Chair of Physics
E. V. Kapralov
Russian Federation
Postgraduate
Yu. F. Ivanov
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Chief Researcher
E. A. Budovskikh
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair of Physics
V. E. Gromov
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Head of the Chair of Physics
References
1. Khasui A., Morigaki O. Naplavka i napylenie [Surfacing and spraying]. (Translated from Japanese) Stepin V.S., Shesterkin N.G. eds. Moscow: Mashinostroenie, 1985. 240 p. (In Russ.).
2. Sosnin N.A., Ermakov S.A., Topolyanskii P.A. Plazmennye tekhnologii. Svarka, nanesenie pokrytii, uprochnenie [Plasma technologies. Welding, coating, hardening]. Moscow: Mashinostroenie, 2008. 406 p. (In Russ.).
3. Kuskov Yu.M., Skorokhodov V.N., Ryabtsev I.A., Sarychev I.S. Elektroshlakovaya naplavka [Electroslag facing]. Мoscow: Nauka i tekhnologiya, 2001. 180 p. (In Russ.).
4. Gladkii P.V., Perepletchikov E.F., Ryabtsev I.A. Plazmennaya naplavka [Plasma facing]. Kiev: Ekotekhnologiya, 2007. 292 p. (In Russ.).
5. Tyurin Yu.M., Zhadkevich M.L. Plazmennye tekhnologii [Plasma technologies]. Kiev: Naukova dumka, 2008. 266 p. (In Russ.).
6. Budovskikh E.A., Gromov V.E., Romanov D.A. The Formation Mechanism Providing High-Adhesion Properties of an Electric-Explosive Coating on a Metal Basis. Doklady Physics. 2013, Vol. 58, no. 3, pp. 82–84.
7. Kovalenko V.V., Kozlov E.V., Ivanov Yu.F., Gromov V.E. Fizicheskaya priroda formirovaniya i evolyutsii gradientnykh strukturnofazovykh sostoyanii v stalyakh i splavakh [The physical nature of the formation and evolution of the gradient of structural-phase states in
8. steels and alloys]. Novokuznetsk: Poligraf, 2009. 557 p. (In Russ.).
9. Brandon David G., Kaplan Wayne D. Microstructural characterization of materials. Chichester, New York, 1999. (Russ.ed.: Brandon D., Kaplan W. Mikrostruktura materialov. Metody issledovaniya i kontrolya. Moscow: Tekhnosfera, 2006. 384 p.).
10. Krishtal M.M., Yasnikov I.S., Polunin V.I., Filatov A.M., Ul’yanenko A.G. Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektral’nyi mikroanaliz v primerakh prakticheskogo primeneniya [Scanning electron microscopy and x-ray microanalysis:
11. examples of practical application]. Moscow: Tekhnosfera, 2009. 208 p. (In Russ.).
12.
Review
For citations:
Raikov S.V., Kapralov E.V., Ivanov Yu.F., Budovskikh E.A., Gromov V.E. DEPTH STRUCTURE OF WEAR RESISTANCE COATING ON STEEL OBTAINED BY ELECTRIC ARC METHOD. Izvestiya. Ferrous Metallurgy. 2015;58(2):121-126. (In Russ.) https://doi.org/10.17073/0368-0797-2015-2-121-126