FORMING OF BIOINERT ULTRAFINE-GRAINED ALLOYS
https://doi.org/10.17073/0368-0797-2015-2-112-116
Abstract
The paper presents the results of a research of microstructure and mechanical properties of bioinert alloys based on titanium, zirconium and niobium in ultrafi ne-grained condition. Ultrafi ne-grained condition was received by a combined method of severe plastic deformation, which included high-cycle abc-pressing at a given temperature regime, a multi-pass rolling in shaped rolls at room temperature and low temperature prerecrystallization annealing. The annealing increased the plasticity of alloys in ultrafi ne-grained condition without changing the grain size. In the two-stage severe plastic deformation and annealing the ultrafi ne-grained structure was formed in the alloys. The average element size of the grain-subgrain structure was 0.16 – 0.25 μm, which provided a signifi cant improvement in mechanical properties (ultimate strength, yield strength and microhardness) of the alloys compared to their original hard-grained or fi ne-crystalline conditions. At the same time, the formation of ultrafi ne-grained conditions in alloys did not lead to any change in the elastic modulus with a signifi cant increase in their strength and plasticity.
About the Authors
Yu. P. SharkeevRussian Federation
Dr. Sci. (Phys.-math.), Professor, Нead of the Laboratory of Physics of Nanostructured Biocomposites
A. Yu. Eroshenko
Russian Federation
Cand. Sci. (Eng.), Researcher of the Laboratory of Physics of Nanostructured Biocomposites
V. I. Danilov
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Chief Researcher of the Laboratory of Physics of Nanostructured
Biocomposites
I. A. Glukhov
Russian Federation
Technologist of the Laboratory of Physics of Nanostructured Biocomposites
A. I. Tolmachev
Russian Federation
Chief Specialist of the Laboratory of Physics of Nanostructured Biocomposites
References
1. K arlov A.V., Shakhov V.P. Sistemy vneshnei fi ksatsii i regulyatornye mekhanizmy optimal’noi biomekhaniki [System of external fi xation and regulatory mechanisms of optimal biomechanics]. Tomsk: STT, 2001. 478 p. (In Russ.).
2. E pple M. Biomineralien und Biomineralisation. Teubner Verlag, Stuttgart 2003. (Russ.ed.: Epple M. Biomineraly i biomineralizatsiya. Pichugin V.F., Sharkeeev Yu.P., Khlusov I.A. eds. Tomsk: Veter, 2007. 137 p.).
3. N iinomi Mitsuo, Masaaki Masaaki, Hieda Junko. Development of new metallic alloys for biomedical applications. Acta Biomaterialia. 2012, no. 8, pp. 3888–3903.
4. A bdel-Hady Gepreel M., Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. Journal of the Mechanical Behavior of Biomedical Materials. 2013, Vol. 20, pp. 407–415.
5. K olachev B.A., Elagin V.I., Livanov V.A. Metallovedenie i termicheskaya obrabotka tsvetnykh metallov i splavov [Metallography and heat treatment of nonferrous metals and alloys]. Moscow: izd. MISiS, 1999. 416 p. (In Russ.).
6. V aliev R.Z., Aleksandrov I.V. Ob”emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva [Bulk nanostructured metallic materials: synthesis, structure and properties]. Moscow: Akademkniga, 2007. 398 p. (In Russ.).
7. V aliev R.Z., Zhilyaev A.P., Langdon T.G. Bulk Nanostructured Materials: Fundamentals and Applications, published jointly by John Wiley. Hoboken, New Jersey, USA, and TMS (2014). 456. p.
8. S egal V.M., Reznikov V.I., Kopylov V.I., Pavlik D.A, Malyshev V.F. Protsessy plasticheskogo strukturoobrazovaniya metallov [Processes of plastic structure formation of metals]. Minsk: Navuka i tekhnsha, 1994. 232 p. (In Russ.).
9. S harkeev Yu.P., Eroshenko A.Yu., Bratchikov A.D., Legostaeva E.V., Danilov V.I., Kukareko V.A. The bulk ultrafi ne titanium with high mechanical properties for medical implants. Nanotekhnika. 2007, no. 3 (11), pp. 81–88. (In Russ.).
10. S alishchev G.A., Valiakhmetov P.M., Galeev P.M., Malysheva S.P. Formation of submicrocrystalline structure in titanium during plastic deformation and its effect on mechanical properties. Russian Metallurgy (Metally). 1996, no. 4, pp.78–82.
11. E roshenko A.Yu., Sharkeev Yu.P., Tolmachev A.I., Korobitsyn G.P., Danilov V.I. The structure and properties of bulk ultrafi ne titanium obtained by abs-pressing and rolling. Perspektivnye materialy. 2009, Special edition, no. 7, pp. 107–112. (In Russ.).
12. S harkeev Y.P., Eroshenko A.Y., Kulyashova K.S., Fortuna S.V., Suvorov K.A., Epple M., Prymak O., Sokolova V., Chernousova S. Microstructure, mechanical and biological properties of Zirconium alloyed with niobium after severe plastic deformation. Mikrostruktur, mechanische und biologische Eigenschaftenvon Niob-legiertem Zirkonium nachintensiverplastischer Verformung. Materialwissen-chaf and Werkstofftech.Materials Science and Engineering Technology. 2013, Vol. 44, no. 2–3, pp. 198–204.
13. S harkeev Yu.P., Polenichkin V.K., Belyavskaya O.A., Polenichkin A.V., Sheshukov S.I. Dental’nyi vnutrikostnyi implantat i abatment dlya nego [Dental intraosseous implant and abutment for him]. Patent RF no. 2441621, Byulleten’ Izobretenii. 2012, no. 4. (In Russ.).
14. Kozlov E.V., Koneva N.A., Trishkina L.I., Zhdanov A.N. Hardening mechanisms and deformation stages in nanograined polycrystals. Russian metallurgy (Metally). 2010, no. 4, pp. 264–267.
15. L yasotskaya V.S., Knyazeva S.I. Metastable phases in titanium alloys and conditions of their formation. Metal Science and Heat Treatment. 2008, vol. 50, no. 7–8, pp. 373–377.
16. S altykov S.A. Stereometricheskaya metallografi ya [Stereometric metallography]. Moscow: Metallurgiya, 1976. 270 p. (In Russ.).Acknowledgements. This work was partially supported by the Basic Research Program of the Presidium of the Russian Academy of Sciences,
17. Program for Basic Research of SB RAS for 2013 – 2016 years (project III.23.2.2).
18. The authors thank Professor Zhu Q.F. and leading technologist Uvarkin P.V. for assistance in work and in carrying out several experiments.
19.
Review
For citations:
Sharkeev Yu.P., Eroshenko A.Yu., Danilov V.I., Glukhov I.A., Tolmachev A.I. FORMING OF BIOINERT ULTRAFINE-GRAINED ALLOYS. Izvestiya. Ferrous Metallurgy. 2015;58(2):112-116. (In Russ.) https://doi.org/10.17073/0368-0797-2015-2-112-116