FORMING AND DEFORMATION BEHAVIOR OF THE ULTRAFINE-GRAINED Zr – 1Nb ALLOY
https://doi.org/10.17073/0368-0797-2015-2-106-111
Abstract
The effect of the severe plastic deformation modes on the ultrafi ne-grained state forming in zirconium Zr – 1Nb alloy comprising precipitations of secondary phases in the form of particles in the volume and at the grain boundaries was studied. Pressing with a gradual temperature decrease in the range of (973 – 573) K was established to dissolution of the secondary phase precipitates and forming the ultrafi ne-grained grain-subgrain structure in the alloy with an average elements size (0.25 ± 0.10) mm. In the pressing process at room temperature with an intermediate hour annealing in the temperature range of (873 – 803) K forming of ultrafi ne-grained structure with an average size of elements (0.45 ± 0.18) mm was observed. At the same time the secondary phase particles were retained in structure. The ultra fi negrained structure forming leads to the increase in the values of tensile and yield strengths of Zr – 1Nb alloy in 1.5 – 2.0 times and the simultaneous increase in the propensity to the localization of plastic deformation and decrease of the values of uniform strain and deformation to failure. Presence of secondary phase’s particles in ultrafi ne-grained structure as an increase in the size of its elements prevents the development of the plastic deformation localization and increases the effect of strain hardening.
About the Authors
G. P. GrabovetskayaRussian Federation
Dr. Sci. (Phys.-math.), Leading Researcher
I. P. Mishin
Russian Federation
Cand. Sci. (Phys.-math.), Researcher
E. N. Stepanova
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of General Physics
I. P. Chernov
Russian Federation
Dr. Sci. (Phys.-math.), Professor of the Chair of General Physics
D. Yu. Bulynko
Russian Federation
Student
References
1. Sharkeev Yu.P., Yaroshenko A.Yu., Kukareko V.A., Belyi A.V., Bataev V.A. Nanostructured titanium. Application, structure, properties. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya – Ferrous Metallurgy. 2012, no. 8, pp. 60–63. (In Russ.).
2. Golovin K.I., Beitan A.V., Volkova V.A., Nikolaev A.Yu., Nurmagomedov A.Yu., Fadeev A.Yu. Justifi cation of the choice of metal alloy for dental prosthesis based on screw implants made of zirconium alloy “Duadenal”. Rossiiskii stomatologicheskii zhurnal. 2000, no. 2, pp. 40–43. (In Russ.).
3. Kolobov Yu.R., Valiev R.Z., Grabovetskaya G.P., Zhilyaev A.P., Dudarev E.F., Ivanov K.V., Ivanov M.B., Kashin O.A., Naidenkin E.V. Zernogranichnaya diffuziya i svoistva nanostrukturnykh materialov [Grain boundary diffusion and properties of nanostructured materials]. Novosibirsk: Nauka, 2001. 213 p. (In Russ.).
4. Morris D.G. Mechanical behavior of nanostructured materials. Switzerland: Trans. Tech. Publication ltd., 1998. 85 p.
5. Gapontsev V.L., Kondrat’ev V.V. Diffusion phase transformations in nanocrystalline alloys during severe plastic deformation. Doklady Akademii nauk. 2002, Vol. 385, no. 5, pp. 608–611. (In Russ.). 6. Korznikov A.V., Ivanisenko Yu.V., Laptionok D.V. Infl uence of severe plastic deformation on the structure and phase composition of the carbon steel. Nanostructured Materials. 1994, Vol. 4, pp. 159–170.
6. Vinokurov V.A., Ratochka I.V., Naidenkin E.V., Mishin I.P., Rozhintseva N.V. Sposob polucheniya titanovykh splavov s submikro-kristallicheskoi strukturoi deformirovaniem s obespecheniem intensivnoi plasticheskoi deformatsii [The method for production of titanium alloys with submicrocrystalline structure deformation with the provision of intensive plastic deformation]. Patent RF no. 2388566. Byulleten' izobretenii. 2010, no. 13. (In Russ.).
7. Strukturnye urovni plasticheskoi deformatsii i razrusheniya [Structural levels of plastic deformation and fracture] Panin V.E. ed. Novosibirsk: Nauka, Sib. otd., 1990. 255 p. (In Russ.).
8. Dudarev E.F., Bakach G.P., Grabovetskaya G.P., Kolobov Yu.R., Kashin O.A., Chernova L.V.. Deformation behavior and the mechanisms of plastic deformation on mezo- and macro-scale levels in submicrocrystalline titanium. Fizicheskaya mezomekhanika. 2001, Vol. 4, no. 1, pp. 97–104. (In Russ.).
9. Naydenkin E.V., Grabovetskaya G.P. Deformation Behavior and Plastic Strain Localization Inherent to Nanostructured Materials Produced by Severe Plastic Deformation Techniques. Journal of Materials Science Forum. 2010, Vol. 633–634, pp. 107–119.
10. Panin V.E., Egorushkin V.E., Panin A.V.. Physical mesomechanics of deformable solids as a multilevel system I. The physical basis for multi-level approach. Fizicheskaya mezomekhanika. 2006, Vol. 9, no. 3, pp. 9–22. (In Russ.).
11. Grabovetskaya G.P., Mishin I.P., Kolobov Yu.R. The effect of dispersion hardening on the regularities and mechanisms of the creep of copper with submicron grain sizes. Russian Journal of Non-Ferrous Metals. 2009, vol. 50, no. 5, pp. 540–544.
12. Kozlov. E.V., Zhdanov A.N., Koneva N.A. Barrier inhibition of dislocations. Issue of Hall-Petch. Fizicheskaya mezomekhanika. 2006, Vol. 9, no. 3, pp. 81–92. (In Russ.).
Review
For citations:
Grabovetskaya G.P., Mishin I.P., Stepanova E.N., Chernov I.P., Bulynko D.Yu. FORMING AND DEFORMATION BEHAVIOR OF THE ULTRAFINE-GRAINED Zr – 1Nb ALLOY. Izvestiya. Ferrous Metallurgy. 2015;58(2):106-111. (In Russ.) https://doi.org/10.17073/0368-0797-2015-2-106-111