Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Description of dynamic viscosity depending on the alloys composition and temperature using state diagrams

https://doi.org/10.17073/0368-0797-2019-9-743-749

Abstract

The equilibrium nature of viscosity and fluidity is discovered on the basis of the Boltzmann distribution within the framework of the concept of randomized particles as a result of the virtual presence of crystal-mobile, liquid-mobile and vapor-mobile particles. It allows one to consider the viscosity and fluidity of solutions, in particular, melts of metal alloys, from the point of view of the equilibrium partial contributions of each component in the total viscosity and fluidity, despite the kinetic interpretation of natural expressions for these properties of the liquid. A linearly additive partial expression of viscosity is possible only for perfect solutions, in this case, for alloys with unrestricted mutual solubility of the components. Alloys with eutectics, chemical compounds and other features of the state diagram are characterized by viscosity dependencies that repeat the shape of liquidus curve over entire range of the alloy composition at different temperatures, with an increase in smoothness and convergence of these curves at increasing temperature. It was established that these features of viscosity temperature dependence are completely revealed within the framework of the concept of randomized particles and the virtual cluster model of viscosity in calculating the fraction of clusters determining the viscosity of the alloy. That viscosity of the alloy is found by the formula in which thermal energy RTcr at liquidus temperature is the thermal barrier of chaotization, characterizing the crystallization temperature of the melt Tcr, as well as the melting point of pure substances. On this basis, a method is proposed for calculating the alloys viscosity by phase diagrams using the temperature dependences of pure components viscosity to change the alloy’s viscosity in proportion to ratio of the clusters fractions at any temperature above liquidus line and for the pure component, taking into account the mole fraction of each component. As a result, a three-factor model of the liquid alloy viscosity has been obtained in which the thermal barrier of chaotization RTcr is used as variable for the first time. It determines the fraction of clusters for both pure substances (at RTcr  =  RTm ) and for alloys. This thermal barrier reflects the essence of the virtual cluster theory of liquid and adequacy of the concept of randomized particles.

About the Authors

V. P. Malyshev
Chemical-Metallurgical Institute named after Zh. Abishev
Kazakhstan

Dr. Sci. (Eng.), Professor, Head of the Laboratory of Entropy­Information Analysis.

Karaganda



A. M. Makasheva
Chemical-Metallurgical Institute named after Zh. Abishev
Kazakhstan

Dr. Sci. (Eng.), Professor, Chief Researcher of the Laboratory of Entropy­Information Analysis.

Karaganda


References

1. Elanskii G.N., Kudrin V.A. Stroenie i svoistva zhidkogo metalla – tekhnologiya plavki – kachestvo stali [Structure and properties of liquid metal – melting technology – quality of steel]. Moscow: Metal lurgiya, 1984, 239 p. (In Russ.).

2. Elanskii G.N., Elanskii D.G. Stroenie i svoistva metallicheskikh rasplavov [Structure and properties of metallic melts]. Moscow: MGVMI, 2006, 228 p. (In Russ.).

3. Baum B.A. Metallicheskie zhidkosti [Metallic liquids]. Moscow: Nauka, 1979, 120 p. (In Russ.).

4. Baum B.A., Tyagunov G.V., Baryshev E.E., Tsepelev E.S. Fundamental’nye issledovaniya fiziko­khimii metallicheskikh rasplavov [Fundamental research of physical chemistry of metallic melts]. Moscow: Akademkniga, 2002, 469 p. (In Russ.).

5. Gavrilin I.V. Plavlenie i kristallizatsiya metallov i splavov [Melting and crystallization of metals and alloys]. Vladimir: VGU, 2000, 260 p.

6. Zborshchik A.M. Teoreticheskie osnovy metallurgicheskogo proizvodstva [Theoretical foundations of metallurgical production]. Donetsk: DonNTU, 2008, 189 p. (In Russ.).

7. Fundamental’nye issledovaniya fizikokhimii metallicheskikh rasplavov [Fundamental studies of the physicochemistry of metallic melts]. Lyakishev N.P. ed. Moscow: Akademkniga, 2002, 467 p. (In Russ.).

8. Vol A.E., Kagan I.K. Stroenie i svoistva dvoinykh metallicheskikh sistem. T. 4 [Structure and properties of binary metal systems. Vol. 4]. Moscow: Nauka, 1979, 576 p. (In Russ.).

9. Cherepakhin A.A., Koltunov I.I., Kuznetsov V.A. Materialovedenie: uchebnik [Materials science: Textbook]. Moscow, 2009, 235 p. (In Russ.).

10. Churkin B.S., Kotegorenko Yu.I. Teoriya liteinykh protsessov: sb. zadach: ucheb. posobie [Theory of foundry processes: Tutorial]. Ekaterinburg, 2006, 202 p. (In Russ.).

11. Schlackenatlas. Verein Deutscher Eisenhüttenleute. Verlag Stahleisen, 1981, 282 p. (Russ.ed.: Atlas shlakov. Sprav. Moscow: Metallurgiya, 1985, 208 p.).

12. Baisanov S.O., Gabdullin T.G., Takenov T.D. Construction of composition-property diagrams of aluminosilicate melts by the simplex lattice method. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 1982, no. 2, pp. 145–146. (In Russ.).

13. Tolokonnikova V.V., Baisanov S.O., Kulikov I.S. Generalized equations for liquidus and solidus curves in binary iron-based systems. Russian metallurgy. Metally.1989, no. 2, pp. 34–33.

14. Meshalkin A.B. Investigation of phase equilibria and estimation of thermodynamic properties of melts in binary inverse systems. Teplofizika i aerodinamika. 2005, vol. 12, no. 4, pp. 669–684. (In Russ.).

15. Denisov V.M., Belousova N.V. Istomin S.A., Bakhvalov S.G., Pastukhov E.A. Stroenie i svoistva rasplavlennykh oksidov [Structure and properties of molten oxides]. Ekaterinburg: UrO RAN, 1999, 495 p. (In Russ.).

16. Glazov V.M., Pavlova L.M. Khimicheskaya termodinamika i fazovye ravnovesiya [Chemical thermodynamics and phase equilibria]. Moscow: Metallurgiya, 1988, 580 p. (In Russ.).

17. Malyshev V.P., Bekturganov N.S., Turdukozhaeva (Makasheva) A.M. Vyazkost’, tekuchest’ i plotnost’ veshchestv kak mera ikh khaotizatsii [Viscosity, fluidity and density of substances as a measure of their chaotization]. Moscow: Nauchnyi mir, 2012, 288 p. (In Russ.).

18. Malyshev V.P., Tolymbekov M.Zh., Turdukozhaeva A.M., Kazhikenova A.Sh., Akuov A.M. Application of the generalized semiempirical model of melts viscosity based on the concept of randomized particles for slag systems. Rasplavy. 2010, no. 1, pp. 76– 84. (In Russ.).

19. Malyshev V.P., Tolymbekov M.Zh., Turdukozhaeva A.M., Kazhikenova A.Sh., Akuov A.M. Flow of melts as the destruction of cluster associates. Rasplavy. 2010, no. 6, pp. 43–49. (In Russ.).

20. Malyshev V.P., Turdukozhaeva A.M. Refinement of the clusterassociative model of melts viscosity based on the temperature effect on the degree of clusters association. Rasplavy. 2011, no. 6, pp. 72–79. (In Russ.).

21. Soroko E.M. Strukturnaya garmoniya system [Structural harmony of systems]. Minsk: Nauka i tekhnika, 1985, 144 p. (In Russ.).

22. Wigner Eugene P. Symmetries and reflections: Scientific Essays. Bloomington: Indiana University Press, 1967, 288 p. (Russ.ed.: Wigner E. Etyudy o simmetrii. Moscow: Mir, 1971, 318 p.).

23. Fedorov P.P. Material science and phase diagrams. In: Sb. tez. dokl. Vseross. konf. s mezhd. uch. i 12­go Vseross. simp. s mezhd. uch. “Khimiya tverdogo tela i funktsional’nye materialy – 2018. Termodinamika i materialovedenie” St. Petersburg [Coll. of abstracts of the All-Russian Conf. with Int. Participation and the 12th AllRussian Symposium with Int. Participation “Solid state chemistry and functional materials – 2018. Thermodynamics and materials science”, St. Petersburg]. St. Petersburg, 2018, p. 28. (In Russ.).


Review

For citations:


Malyshev V.P., Makasheva A.M. Description of dynamic viscosity depending on the alloys composition and temperature using state diagrams. Izvestiya. Ferrous Metallurgy. 2018;61(9):743-749. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-743-749

Views: 621


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)