Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubling process. Report 1. Reducing agent – a mixture of CO – CO2
https://doi.org/10.17073/0368-0797-2019-9-731-736
Abstract
About the Authors
A. S. VusikhisRussian Federation
Cand. Sci. (Eng.), Senior Researcher.
Ekaterinburg
L. I. Leont’ev
Russian Federation
Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher.
Moscow
D. Z. Kudinov
Russian Federation
Cand. Sci. (Eng.), Senior Researcher.
Ekaterinburg
E. N. Selivanov
Russian Federation
Dr. Sci. (Eng.), Head of the Laboratory of Pyrometallurgy of Nonferrous Metals.
Ekaterinburg
References
1. Vanyukov A.V., Bystrov V.P., Vaskevich A.D. etc. Plavka v zhidkoi vanne [Melting in a liquid bath]. Moscow: Metallurgiya, 1986, 259 p. (In Russ.).
2. Mechev V.V., Bystrov V.P., Tarasov A.V. etc. Avtogennye protsessy v tsvetnoi metallurgii [Autogenous processes in non-ferrous metallurgy]. Moscow: Metallurgiya, 1991, 413 p. (In Russ.).
3. Okhotskii V.B. Fizikokhimicheskaya mekhanika staleplavil’nykh protsessov [Physicochemical mechanics of steelmaking processes]. Moscow: Metallurgiya, 1993, 151 p. (In Russ.).
4. Surin V.A., Nazarov Yu.N. Masso i teploobmen, gidrogazodinamika metallurgicheskoi vanny [Mass and heat transfer, fluid dynamics of the metallurgical bath]. Moscow: Metallurgiya, 1993, 352 p. (In Russ.).
5. Yavoiskii A.V., Kharlashin P.S., Chaurdi T.M. Nauchnye osnovy staleplavil’nykh protsessov [Scientific fundamentals of steelmaking processes]. Mariupol, 2003, 276 p. (In Russ.).
6. Romenets V.A., Valavin V.S., Usachev A.B. Protsess Romelt [Romelt process]. Moscow: MISiS, ID Ruda i Metally, 2005, 399 p. (In Russ.).
7. Morachevskaya B.C., Bukhbinder A.I. Interaction of oxidized ni ckel ore melt with carbon monoxide, hydrogen and natural gas. Byulle ten’ Tsvetnaya Metallurgiya. 1968, no. 4, pp. 24–28. (In Russ.).
8. Morachevskaya B.C., Bukhbinder A.I. Interaction of oxidized nickel ore melt with reducing gases under bubbling conditions. In: Trudy instituta Gipronikel’. Leningrad: 1973, Issue 58, pp. 82–88. (In Russ.).
9. Rusakov M.R., Vostrikov G.V., Pinin L.N., Sadovnikova E.A. New degrading methods of converter and furnace slags with the use of gaseous and liquid reductants and electricity. In: Trudy instituta Gipronikel’. Leningrad: 1979, pp. 8–15. (In Russ.).
10. Rusakov M.R. Scavenging of slag melts by blowing with reducing gases. Tsvetnye metally. 1985, no. 3, pp. 40–42. (In Russ.).
11. Komkov A.A., Baranova N.V., Bystrov V.P. Research of the highly oxidized slag reducing impoverishment in bubbling conditions. Tsvet nye metally. 1994, no. 12, pp. 26–30. (In Russ.).
12. Krasheninnikov M.V., Marshuk L.A., Leont’ev L.I. Selective reduction of nickel from oxide melt. Rasplavy. 1998, no. 4, pp. 45–48. (In Russ.).
13. Fomichev V.B., Knyazev M.V., Ryumin A.A., Tsemekhman L.Sh., Ryabko A.G., Pavlinova L.A., Tsymbulov L.B. Study of slag depletion process with blowing by gas mixes having different partial oxygen pressure. Tsvetnye metally. 2002, no. 9, pp. 32–36. (In Russ.).
14. Komkov A.A., Kamkin R.I. Behavior of copper and impurities at blowing of copper smelting slags with a gas mixture CO-CO2 . Tsvetnye metally. 2011, no. 6, pp. 26–31. (In Russ.).
15. Shavrin S.V., Zakharov I.N., Ipatov B.V. Kinetic regularities of slag reduction by gas. Izvestiya AN SSSR. Metallurgiya i gornoe delo. 1964, no. 3, pp. 22–31. (In Russ.).
16. Berdnikov V.I., Gudim Yu.A., Karteleva M.I. Generalized formula for calculation of movement speed of solid particles, bubbles and drops in liquid and gaseous media. Izvestiya VUZov. Chernaya metal lurgiya = Izvestiya. Ferrous Metallurgy. 1997, no. 7, pp. 6–10. (In Russ.).
17. Vusikhis A.S., Leont’ev L.I., Chentsov V.P. etc. Metallic phase forming in barbotage of multicomponent oxide melt by reduction gas. Report 1. Theoretical basis of the process. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2016, no. 9, pp. 639–644. (In Russ.).
18. Vusikhis A.S., Dmitriev A.N. Reduction process of metal oxides from the melt by gas-reducing agent in bubbling layer. Vestnik UGTU-UPI. 2004, no. 15(45). Part 1, pp. 93–95. (In Russ.).
19. Vusikhis A.S., Kudinov D.Z., Leont’ev L.I. Modeling of the kinetics of nickel reduction from a multicomponent oxide melt with a gaseous reducing agent. Russian Journal of Physical Chemistry A. 2008, vol. 82, no. 11, pp. 2035–2038.
20. Dmitriev A.N., Vusikhis A.S., Sitnikov V.A., Leontiev L.I., Kudinov D.Z. Thermodynamic modeling of iron oxide reduction by hydrogen from the B2O3–CaO–FeO melt in bubbled layer. Israel Journal of Chemistry. 2007, vol. 47, no. 3-4, pp. 299–302.
21. Vusikhis A.S., Kudinov D.Z., Leont’ev L.I. A kinetic model of the joint reduction of iron and nickel from a multicomponent oxide melt with hydrogen in a bubbling layer. Russian Journal of Physical Chemistry A. 2008, vol. 82, no. 11, pp. 2030–2034.
22. Kazachkov E.A. Raschety po teorii metallurgicheskikh protsessov [Calculations on the theory of metallurgical processes]. Moscow: Metallurgiya, 1988, 288 p. (In Russ.).
23. Romenets V.A., Valavin V.S., Pokhvisnev Yu.V. Technological assessment of the Romelt process in the classic and two-zone variants. Metallurgist. 2014, vol. 58, no. 1-2, pp. 20–27.
24. Dorofeev G.A., Murat S.G., Odorod’ko T.N. etc. Sposob zhidkofaznogo polucheniya zheleza pryamogo vosstanovleniya [Me thod of liquid-phase obtaining of directly reduced iron]. Patent RF no. 2511419. Byulleten’ izobretenii. 2014, no. 10. (In Russ.).
25. Dorofeev G.A., Yantovski P.R.,Odorodko T.N.,Kharitonova J.V., Protopopov A.A., Erofeev V.A., Arsenieva A.A., Murat S.G. New energy – metallurgical production process of direct reduced iron and electrical energy. In: Proceedings of International scientific and technical Conference named after Leonardo da Vinci. No. 1, Wissenschaftliche Welt, e.V, 2013, pp. 54–58.
Review
For citations:
Vusikhis A.S., Leont’ev L.I., Kudinov D.Z., Selivanov E.N. Thermodynamic modeling of nickel and iron reduction from multicomponent silicate melt in bubling process. Report 1. Reducing agent – a mixture of CO – CO2. Izvestiya. Ferrous Metallurgy. 2018;61(9):731-736. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-731-736