Preview

Izvestiya. Ferrous Metallurgy

Advanced search

Analysis of the methodology for determining CO2 emissions on the territory of the Russian Federation in respect to the ferrous metallurgy

https://doi.org/10.17073/0368-0797-2019-9-721-730

Abstract

Nowadays there are different points of view about the cause of global climate change. The current warming, according to one version, is related to the greenhouse effect, i.e. with increasing concentrations of greenhouse gases (mainly carbon dioxide, CO2 ) in the atmosphere. It is believed that the uncontrolled growth of greenhouse gases in the atmosphere may lead to negative consequences. The position of  UNFCCC and IPCC proposing accounting of greenhouse gases is of recommendatory nature. In particular, an inventory of greenhouse gases can be produced, taking into account the particularities of national development. The main objective of the greenhouse gas inventory is defining reserves to reduce them. Main anthropogenic sources of CO2 formation in the Russian Federation are reviewed. Comparative indicators of CO2 emissions in different sectors of production are provided. The methodology for greenhouse gases in Russia is considered, in particular with respect to the steel industry. The analysis has shown that official methods to assess CO2 emissions into the atmosphere are mainly Base and Sectoral approaches and Level 2 method. Detailed approach and Level 3 method are used for a limited number of metallurgical processing. Part of the CO2 emissions from ferrous metallurgy, in particular the emissions from the production of blast furnace coke, is accounted in the energy sector. According to the inventory estimation, total anthropogenic CO2 emissions on the territory of RF have decreased and amounted in 2015 75  % from the level of 1990: compared to 1990, the CO2 emissions of the steel industry also decreased. Estimated share of the ferrous metallurgy in anthropogenic emissions of CO2 compared to 1990 (4.0  %) has increased and amounted to 4.8  % in 2015.

About the Author

L. M. Simonyan
National University of Science and Technology “MISIS” (MISIS)
Russian Federation

Dr. Sci. (Eng.), Professor of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection.

Moscow



References

1. Kondrat’ev K.Ya., Demirchan K.S Global climate change and the carbon cycle. Izv. RGO. 2000, vol. 132, Issue 4, pp. 1–20. (In Russ.).

2. Berdin V.Kh., Vasil’ev S.V., Danilov-Danil’yan V.I. etc. Kiotskii protokol: voprosy i otvety [Kyoto Protocol: questions and answers]. Available at URL: https://wwf.ru/upload/iblock/3c3/kyoto_qa.pdf (In Russ.).

3. Yusfin Yu.S., Leont’ev L.I., Chernousov P.I. Promyshlennost’ i okruzhayushchaya sreda [Industry and environment]. Moscow: Akademkniga, 2002, 469 p. (In Russ.).

4. Lyakishev N.P., Revyakin A.V. Global warming and ferrous metallurgy. Stal’. 2000, no. 10, pp. 104–108. (In Russ.).

5. Shevelev L.N. Methodical bases of greenhouse gas inventory in Russian steel industry. Metallurg. 2007, no. 3, pp. 29–30. (In Russ.).

6. Lisienko V.G., Lapteva A.V., Chesnokov Yu.N., Lugovkin V.V. Comparative emission of greenhouse gas CO2 in the processing of ferrous metallurgy. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 9, pp. 625–629. (In Russ.).

7. Sorokhtin O.G. Evolution of the Earth climates. Pervoe sentyabrya. Fizika. 2007, no. 9. Electronic resource. Available at URL: http://fiz.1september.ru/article.php?ID=200700907 (In Russ.).

8. Ramochnaya konventsiya Organizatsii Ob”edinennykh Natsii ob izmenenii klimata. Prinyata 9 maya 1992 g. [The United Nations Framework Convention on climate change. Adopted May 9, 1992]. Available at URL: http://www.un.org/ru/documents/decl_conv/conventions/climate_framework_conv.shtml (In Russ.).

9. Metodicheskie rekomendatsii po provedeniyu dobrovol’noi inventarizatsii ob”ema vybrosov parnikovykh gazov v sub”ektakh rossiiskoi federatsii [Methodical recommendations for voluntary greenhouse gas inventory in the constituent entities of the Russian Federation]. Moscow: 2017, 370 p. Available at URL: http://www.ncsf.ru/uploads/userfiles/files/metodRekomendatsii.pdf (In Russ.).

10. Natsional’nyi doklad o kadastre antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov ne reguliruemykh Monreal’skim protokolom za 1990 – 2015gg. Chast’ 1 [National report on inventory of anthropogenic emissions from sources and removals by sinks of greenhouse gases not controlled by the Montreal Protocol for the 1990-2015. Part 1]. Moscow: 2017, 471 p. (In Russ.).

11. Shestoe natsional’noe soobshchenie rossiiskoi federatsii predstavlennoe v sootvetstvii so stat’yami 4 i 12 Ramochnoi Konventsii Organizatsii Ob”edinennykh Natsii ob izmenenii klimata i stat’ei 7 Kiotskogo protokola [The 6th national communication of the Russian Federation submitted in accordance with articles 4 and 12 of the United Nations Framework Convention on climate change and article 7 of the Kyoto Protocol]. Moscow: 2013, 281 p. (In Russ.).

12. Yusfin Yu.S., Chernousov P.I., Nedelin S.V. Evaluation of different steelmaking methods on the basis of environmental and conservation concerns. Metallurgist. 2001, vol. 45, no. 5-6, pp. 189–194.

13. Shevelev L.N. Assessment of greenhouse gas emissions in the metallurgical industry. International Conference. Metallurg. 2007, no. 7, pp. 9–15. (In Russ.).

14. Lisienko V., Anufriev V., Berg D., Chesnokov Y., Lapteva A. The greenhouse index of sustainable development for metallurgical processes of production in aspect of green power. E3S Web of Confe rences. 2016, vol. 6, 03010.

15. Simonyan L.M. Potapochkin A.N., Mustafin R.M. Methods of estimation and analysis of the sources of CO2 emissions using an automated data base. Elektrometallurgiya. 2007, no. 7, pp. 37–40. (In Russ.).

16. Potapochkin A.N., Simonyan L.M., Chernousov P.I., Kosyrev K.L. Consumption of carbon and CO2 emissions in ferrous metallurgy: evaluation options. Stal’. 2004, no. 9, pp. 69–72. (In Russ.).

17. Potapochkin A.N., Simonyan L.M., Mustafin R.M., Chernousov P.I Analysis of the source of CO2 emissions in ferrous metallurgy and corresponding estimation methods. Steel in Translation. 2005, vol. 35, no. 1, pp. 78–82.

18. Simonyan L.M., Potapochkin A.N. Automated database “Information System of the CO2-monitoring of metallurgical production. In: Zapiski gornogo instituta. Ekologiya i ratsional’noe prirodopol’zovanie. T. 166 [Notes of the Mining Institute. Ecology and environmental management. Vol. 166]. St. Petersburg, 2005, pp. 126–128. (In Russ.).

19. Zhang Q., Jia G.-Y., Cai J.-J., Shen F.-M. Carbon flow analysis and CO2-emission reduction strategies of iron-making system in steel enterprise. Source of the Document Dongbei Daxue Xuebao. Journal of Northeastern University. 2013, vol. 34 (3), pp. 392–394+403.

20. Imris M., Swartling M., Heegaard B.M., Santén S. IRON ARC: A coke-less ironmaking process. AISTech – Iron and Steel Technology Conference Proceedings. 2014, vol. 1, pp. 539–546.


Review

For citations:


Simonyan L.M. Analysis of the methodology for determining CO2 emissions on the territory of the Russian Federation in respect to the ferrous metallurgy. Izvestiya. Ferrous Metallurgy. 2018;61(9):721-730. (In Russ.) https://doi.org/10.17073/0368-0797-2019-9-721-730

Views: 1014


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)