Preview

Izvestiya. Ferrous Metallurgy

Advanced search

APPLICATION OF SIMPLEX LATTICE METHOD FOR COMPOSITION-VISCOSITY PLOTTING OF СаО – SiO2 – В2О3 SLAGS WITH 15 % Al2O3 AND 8 % MgO

https://doi.org/10.17073/0368-0797-2018-8-601-605

Abstract

The results of composition-viscosity plotting for slag of the CaO – SiO2 – B2O3 system containing 15 % of Al2O3 and 8 % of MgO using simplex lattice method are given in this paper. It allows obtaining mathematical models describing property dependence on composition as a continuous function. The study was subjected to a fixed area in a form of local simplex represented by two CaO – SiO2 – B2O3 concentration triangles. The experiment was planned in pseudo-component coordinates. To describe dependence of slag viscosity on its composition, a mathematical model of polynomial of the third degree was chosen. In experiment planning matrix, slag compositions are given in pseudo-components and original components coordinates. Slags corresponding to studied local simplex vertex composition were melted in graphite crucibles from pre-heated oxides of ChDA brand. Composition of slag, corresponding to the points of local simplex plan, was obtained by counter-mixing of simplex vertex slag. In experiments, molybdenum crucibles were used to measure slags viscosity. Measurements were carried out using an electric vibrational viscometer in an argon flow with continuous cooling of melt from homogeneous-liquid to solid state. The results of generalization of mathematical modeling and graphical representation presented in form of compositionproperty
diagrams made it possible to quantify effect of slag basicity and B2O3 content on viscosity of resulting oxide system. The slag of CaO – SiO2 – B2O3 oxide system, containing 15 % of Al2O3 and 8 % of MgO, is characterized by sufficiently low viscosity in temperature range of 1450 – 1500 °C. Viscosity of such slags increases significantly with temperatures decrease to 1400 °C. It has been established that slags with basicity of 2 to 5, containing 1 to 4 % of B2O3 , are characterized by high liquid mobility at constant concentrations of Al2O3 (15 %) and MgO (8 %), their viscosity in temperature range of 1450 – 1500 °C does not exceed 4 – 7 poise. Such slags have, as a rule, high refining properties and can be recommended for the formation on a ladle furnace installation.

About the Authors

A. A. Babenko
Institute of Metallurgy UB RAS
Russian Federation

Dr. Sci. (Eng.), Chief Researcher of the Laboratory of Pyrometallurgy of Nonferrous Metals

Ekaterinburg, Russia



V. I. Zhuchkov
Institute of Metallurgy UB RAS
Russian Federation

Dr. Sci. (Eng.), Professor, Chief Researcher

Ekaterinburg, Russia



A. G. Upolovnikova
Institute of Metallurgy UB RAS
Russian Federation

Cand. Sci. (Eng.), Senior Researcher

Ekaterinburg, Russia



V. V. Ryabov
Institute of Metallurgy UB RAS
Russian Federation

Research Associate

Ekaterinburg, Russia



References

1. Dyudkin D.A., Kisilenko V.V. Proizvodstvo stali. T. 3. Vnepechnaya metallurgiya stali [Steel production. Vol. 3. Out-of-furnace metallurgy of steel]. Moscow: Teplotekhnik, 2010, 544 p. (In Russ.).

2. Chumakov S.M., Lamukhin A.M., Zinchenko S.D. Concept of production of low-sulfur steels at OJSC Severstal taking into account the technological aspects. In: Trudy VI kongressa staleplavil’shchikov [Proceedings of the 6th Congress of Steel-smelters]. Moscow: AO “Chermetinformatsiya”, 2001, pp. 63–66. (In Russ.).

3. Sokolov G.A. Vnepechnoye rafinirovaniye stali [Out-of-furnace refining of steel]. Moscow: Metallurgiya, 1977, 208 p. (In Russ.).

4. Hongming W., Tingwang Z., Hua Z. Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO – based refining flux. ISIJ International. 2011, vol. 51, no. 5, рр. 702–708.

5. Yan P., Guo X., Huang S., Dyck J., Guo M., Blanpain B. Desulphurisation of stainless steel by using CaO–Al2O3 based slags during secondary metallurgy. ISIJ International. 2013, vol. 53, no. 3, pp. 459–467.

6. Hui-xiang Yu, Xin-hua Wang, Mao Wang, Wan-jun Wang Desulfurization ability of refining slag with medium basicity. Int. J. Miner. Metall. Mater. 2014, vol. 21, no. 12, pp. 1160–1166.

7. Takahashi D., Kamo M., Kurose Y., Nomura H. Deep steel desulphurization technology in ladle furnace at KSC. Ironmaking and Steelmaking. 2003, vol. 30, no. 2, pp. 116–119.

8. Nurhudin, Maulud Hidayat, Windu Basuki Deep desulfurization process for producing ultra-low sulfur steel at PT Krakatau steel. SEAISI Quarterly. 2004, vol. 33, no. 2, pp. 29–34.

9. Hongming W., Guirong L., Bo L., Xue-jun Z., Yong-qi Y. Effect of B2O3 on melting temperature of CaO-based ladle refining slag. ISIJ International. 2010, vol. 17, no. 10, pp. 18–22.

10. Zhang L., Zhi J., Mei F. etc. Basic oxygen furnace based steelmaking processes and cleanliness control at Baosteel. Ironmaking and Steelmaking. 2006, vol. 33, no. 2, pp. 129–139.

11. Wang H.M., Li G.R., Dai Q.X. etc. Effect of additives on viscosity of LATS refining ladle slag. ISIJ International. 2006, vol. 46, no. 5, pp. 637–640.

12. Kang Y.J., Yu L., Du S.C. Study of inclusion removal mechanism around open eye in ladle treatment. Ironmaking and Steelmaking. 2007, vol. 34, no. 3, pp. 253–261.

13. Kim V.A., Nikolai E.I., Akberdin A.A., Kulikov I.S. Planirovanie eksperimenta pri issledovanii fiziko-khimicheskikh svoistv metallurgicheskikh shlakov: Metodicheskoe posobie [Planning of experiment at the study of physical-chemical properties of metallurgical slags: Manual]. Alma-Ata: Nauka, 1989, 116 p. (In Russ.).

14. Scheffé H. Experiments with mixtures. J. Roy Stat. Soc. B. 1958, vol. 20, pp. 344–360.

15. Nalimov V.V. Theory of experiment. In: Novyye idei v planirovanii eksperimenta [New ideas in the planning of the experiment]. Moscow: Nauka, 1969, pp. 9–20. (In Russ.).

16. Kim V.A., Akberdin A.A., Kulikov I.S. The use of simplex lattices method for charting structure – viscosity diagrams. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 1980, no. 9, pp. 167, 168. (In Russ.).

17. Babenko A.A., Zhuchkov V.I., Smirnov L.A., Sychev A.V., Upolovnikova A.G. The use of the simplex lattice method for constructing the composition-viscosity diagrams of the slags of CaO – SiO2 – Al2O3 – MgO – B2O3 system. Butlerovskie soobshcheniya. 2016, vol. 48, no. 11, pp. 40–44. (In Russ.).

18. Babenko A.A., Zhuchkov V.I., Upolovnikova A.G., Kel’ I.N. Study of the viscosity of slags of СаО–SiO2–В2О3– 25 % Al2O3 – 8 % MgO system. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2017, vol. 60, no. 10, pp. 820–825. (In Russ.).

19. Babenko A.A., Zhuchkov V.I., Sychev A.V., Ryabov V.V., Upolovnikova A.G. Construction of diagrams of slag viscosity of the CaO – SiO2 – Al2O3 – 8 % MgO – 4 % B2O3 system by the simplex lattice method. Metally. 2017, no. 3, pp. 17–20. (In Russ.).

20. Babenko A.A., Zhuchkov V.I., Smirnov L.A., Upolovnikova A.G., Selmenskikh N.I., Sychev A.V. Formation of basic boron-containing slags as a promising direction for out-of-furnace desulfurization and direct micro-alloying of low-carbon steel with boron. Chernaya metallurgiya. Byul. in-ta “Chermetinformatsiya”. 2017, no. 9 (1413), pp. 50–54. (In Russ.).


Review

For citations:


Babenko A.A., Zhuchkov V.I., Upolovnikova A.G., Ryabov V.V. APPLICATION OF SIMPLEX LATTICE METHOD FOR COMPOSITION-VISCOSITY PLOTTING OF СаО – SiO2 – В2О3 SLAGS WITH 15 % Al2O3 AND 8 % MgO. Izvestiya. Ferrous Metallurgy. 2018;61(8):601-605. (In Russ.) https://doi.org/10.17073/0368-0797-2018-8-601-605

Views: 687


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)