Preview

Izvestiya. Ferrous Metallurgy

Advanced search

APPLICATION OF BARIUM-STRONTIUM CARBONATITE FOR PRODUCTION OF WELDING FLUXES BASED ON SILICOMANGANAZE PRODUCTION SLAG

https://doi.org/10.17073/0368-0797-2018-8-596-600

Abstract

The study results of introduction of barium-strontium carbonatite of various fractional composition into flux based on silicomanganese production slag are presented. The principal possibility of using their mixtures for depositing and welding of low-alloy steels is shown, while the use of barium-strontium carbonatite makes it possible to reduce contamination of weld metal with nonmetallic inclusions. In series of experiments in laboratory conditions, various compositions of welding fluxes were made and investigated. As components, barium-strontium modifier BSC produced by “NPK Metallotechnoprom” LC under TU 1717-001-75073896-2005 was used, wt. %: 13.0 – 19.0 % BaO; 3,5 – 7,5 % SrO; 17.5 – 25.5 % CaO; 19.8 – 29.8 % SiO2 ; 0.7 – 1.1 % MgO; 2.5 – 3.5 % K2O; 1.0 – 2.0 % Na2O; 1.5 – 6.5 % Fe2O3 ; 0 to 0.4 % MnO; 1.9 – 3.9 % of Al2O3 ; 0.7 – 1.1 % TiO2 ; 16.0 – 20.0 % CO2 as well as silicomanganese slag produced by JSC “EVRAZ – West-Siberian Metallurgical Combine”, wt. %: 6.91 – 9.62 % Al2O3 ; 22.85 – 31.70 % CaO; 46.46 – 48.16 % SiO2 ; 0.27 – 0.81 % FeO; 6.48 – 7.92 % MgO; 8.01 – 8.43 % MnO; 0.28 – 0.76 % F; 0.26 – 0.36 % Na2O; up to 0,62 % K2O; 0.15 – 0.17 % S; 0.01 % P. Basis of the flux is silicomanganese production slag, into which a flux additive was introduced. Flux additive was produced in two ways. The first one: by mixing barium-strontium modifier with liquid glass in a ratio of 75 and 35 %, respectively. The second variant is as follows: dust of strontium-barium modifier of fraction less than 0.2 mm was used as a flux additive. The technology of flux-additive manufacturing is described. Welding of rollers was carried out using ASAW-1250 welding tractor. Regimes of surfacing were worked out. The chemical compositions of fluxes, slag crusts, flux and weld metal were determined. Metallographic studies of metal were performed. The results of analysis for presence of nonmetallic inclusions in weld zone were carried out in accordance with GOST 1778 – 70. Studies indicate a decrease in contamination of weld metal by silicates that are not deformed and absence of brittle silicates. 

About the Authors

N. A. Kozyrev
Siberian State Industrial University
Russian Federation

Dr Sci (Eng), Professor, Head the of Chair “Materials, Foundry and Welding Production”

Novokuznetsk, Kemerovo Region, Russia



L. P. Bashchenko
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Senior Lecturer of the Chair “Thermal Power and Ecology”

Novokuznetsk, Kemerovo Region, Russia

 


O. E. Kozyreva
Siberian State Industrial University
Russian Federation

Engineer, Candidate for a degree of Cand. Sci. (Eng.) of the Chair “Materials, Foundry and Welding Production”

Novokuznetsk, Kemerovo Region, Russia

 


A. R. Mikhno
Siberian State Industrial University
Russian Federation

Bachelor of the Chair “Materials, Foundry and Welding Production”

Novokuznetsk, Kemerovo Region, Russia

 


References

1. Amado Cruz Crespo, Rafael Quintana Puchol, Lorenzo Perdomo González, Carlos R. Gómez Pérez, Gilma Castellanos, Eduardo Díaz Cedréa, Tamara Ortíz. Study of the relationship between the composition of a fused flux and its structure and properties. Welding International. 2009, vol. 23, no. 2, pp. 120–131.

2. Golovko V.V., Potapov N.N. Special features of agglomerated (ceramic) fluxes in welding. Welding International. 2011, vol. 25, no. 11, pp. 889–893.

3. Rafael Quintana Puchol, Jeily Rodríguez Blanco, Lorenzo Perdomo Gonzalez, Gilma Castellanos Hernández, Carlos Rene Gómez Pérez. The influence of the air occluded in the deposition layer of flux during automatic welding: a technological aspect to consider in the quality of the bead. Welding International. 2009, vol. 23, no. 2,

4. pp. 132–140.

5. Crespo A.C., Puchol R.Q., Goncalez L.P., Sanchez L.G., Gomez Perez C.R., Cedre E.D., Mendez T.O., Pozol J.A. Obtaining a submerged arc welding flux of the MnO–SiO2–CaO–Al2O3–CaF2 system by fusion. Welding International. 2007, vol. 21, no. 7, pp. 502–511.

6. Volobuev Yu.S., Volobuev O.S., Parkhomenko A.G., Dobrozhela E.I., Klimenchuk O.S. Using a new general-purpose ceramic flux SFM-101 in welding of beams. Welding International. 2012, vol. 26, no. 8, pp. 649–653.

7. Volobuev Yu.S., Surkov A.V., Volobuev O.S., Kipiani P.N., Shestov D.V., Pavlov N.V., Savchenko A.I. The development and properties of a new ceramic flux used for recorditoning rolling stock components. Welding International. 2010, vol. 24, no. 4, pp. 298–300.

8. Potapov N.N., Kurlanov S.A. A criterion for evaluating the activity of fused welding fluxes. Welding International. 1987, vol. 1, no. 10, pp. 951–954.

9. Babushkin P.L., Persits V.Yu. Determination of hydrogen in the form of moisture in basic electrode coatings and fluxing materials in metallurgical production. Welding International. 1991, vol. 5, no. 9, pp. 741–742.

10. Kozyrev N.A., Kryukov R.E., Kozyreva O.E., Lipatova U.I. Production of welding fluxes using silicomanganese waste slag. In: Obrabotka materialov: sovremennye problemy i puti resheniya. Sbornik trudov Vserossiiskoi nauchno-prakticheskoi konferentsii molodykh uchenykh, aspirantov i studentov [Processing of materials: modern problems and solutions. Coll. of Proc. of the All-Russian Scien. and Pract. Conf. of Young Scientists, Post-Graduates and Students]. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta, 2015, pp. 90–95. (In Russ.).

11. Kozyrev N.A., Kryukov R.E., Lipatova U.I., Kozyreva O.E. On possibility of silicium manganese slag application for welding fluxes production. In: Metallurgiya: tekhnologii, innovatsii, kachestvo. Trudy XIX nauchno-prakticheskoi konferentsii. V 2 ch. Ch. 2 [Metallurgy: technologies, innovations, quality. Proc. of the 19th Sci.-Prac. Conf. In 2 Vol. Part 2]. Protopopov E.V. ed. Novokuznetsk: izd. Sib-GIU, 2015, pp. 188–191. (In Russ.).

12. Lipatova U.I., Matinin I.V., Provodova A.A., Kuz’menko D.I. Influence of addition of barium-strontium carbonatite in flux on weld seam quality. In: Nauka i molodezh’: problemy, poiski, resheniya. Sbornik trudov Vserossiiskoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh. Vyp. 20. Ch. III [Science and youth: problems, searches, solutions. Coll. of Works of the All-Russian Sci. Conf. of Students, Graduate Students and Young Scientists. Issue 20. Part III]. Novokuznetsk: izd. SibGIU, 2016, pp. 266–271. (In Russ.).

13. Povolotskii D.Ya., Roshchin V.E., Mal’kov N.V. Elektrometallurgiya stali i ferrosplavov [Electrometallurgy of steel and ferroalloys]. Moscow: Metallurgiya, 1995, 592 p. (In Russ.).

14. Gasik M.I., Lyakishev N.P., Emlin B.I. Teoriya i tekhnologiya proizvodstva ferrosplavov [Theory and technology of ferroalloys production]. Moscow: Metallurgiya, 1988, 784 p. (In Russ.).

15. Povolotskii D.Ya., Roshchin V.E., Ryss M.A., Stroganov A.I., Yartsev M.A. Elektrometallurgiya stali i ferrosplavov [Electrometallurgy of steel and ferroalloys]. Moscow: Metallurgiya, 1984, 586 p. (In Russ.).

16. Gasik M.I., Lyakishev N.P. Teoriya i tekhnologiya elektrometallurgii ferrosplavov [Theory and technology of ferroalloys electrometallurgy]. Moscow: Intermet inzhiniring, 1999, 764 p. (In Russ.).

17. Ryss M.A. Proizvodstvo ferrosplavov [Production of ferroalloys]. Moscow: Metallurgiya, 1985, 344 p. (In Russ.).

18. Potapov N.N., Konishchev B.P., Kurlanov S.A., etc. Svarochnye materialy dlya dugovoi svarki: spravochnik. V 2 t. T. 1. Zashchitnye gazy i svarochnye flyusy: spravochnoe posobie [Welding materials for arc welding: Reference book. In 2 vols. Vol. 1. Protective gases and welding fluxes]. Potapov N.N. ed. Moscow: Mashinostroenie, 1989, 544 p. (In Russ.).

19. Podgaetskii V.V., Rabkin D.M. Flyusy dlya avtomaticheskoi i poluavtomaticheskoi svarki [Fluxes for automatic and semi-automatic welding]. Kiev: Izd-vo AN USSR, 1954, 56 p. (In Russ.).

20. Rozhikhina I.D., Nokhrina O.I., Dmitrienko V.I., Platonov M.A. Modification of steel by barium and strontium. IzvestiyaVUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 12, pp. 871–875. (In Russ.).

21. Grigor’ev Yu.V., Ryabchikov I.V., Roshchin V.E. Thermodynamic analysis of joint reduction of silicon and barium by carbon. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2005, no. 7, pp. 3–5. (In Russ.).


Review

For citations:


Kozyrev N.A., Bashchenko L.P., Kozyreva O.E., Mikhno A.R. APPLICATION OF BARIUM-STRONTIUM CARBONATITE FOR PRODUCTION OF WELDING FLUXES BASED ON SILICOMANGANAZE PRODUCTION SLAG. Izvestiya. Ferrous Metallurgy. 2018;61(8):596-600. (In Russ.) https://doi.org/10.17073/0368-0797-2018-8-596-600

Views: 728


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)