Preview

Izvestiya. Ferrous Metallurgy

Advanced search

THERMODYNAMICS OF THE PROCESSES OF INTERACTION OF LIQUID METAL COMPONENTS IN Fe – Mg – Al – La – O SYSTEM

https://doi.org/10.17073/0368-0797-2018-6-460-465

Abstract

At the present time, rare-earth elements in metallurgy are used in  the form of mischmetal – a rare-earth elements natural mixture (with  atomic numbers from 57 to 71). It contains about 50  wt.  % of cerium.  The remaining elements are mainly lanthanum and niobium. The specific composition is determined by the ore deposit. Inconstant composition of the modifier containing rare-earth metals (REM) can significantly reduce its efficiency. Experimentally, for every branded steels  composition the ratio of various REMs can’t be selected because of the  high costs of obtaining technically pure rare-earth metals. The task of  determining the each rare earth element optimum concentrations and  complex ligature composition can be solved by thermodynamic modeling. In the framework of thermodynamic modeling, the interaction  between magnesium, aluminum and lanthanum with oxygen in liquid  iron is presented. And the thermodynamic model of steel deoxidation  by these active metals composition is considered. On the basis of available literature data on the phase diagrams of the systems MgO – Al2O3 ,  MgO – La2O3 and La2O3 – Al2O3 , the coordinates of the invariant equilibria points in the system MgO – La2O3 – Al2O3 were determined. The  phase diagram of the system MgO – La2O3 – Al2O3 was constructed. It  made possible to establish all phase equilibria realized in the process  of deoxidation of steel with magnesium, lanthanum and aluminum and  to describe these phase equilibria by chemical reactions equations. The  activity of the components in liquid oxide melts was determined using  the theory of subregular ionic solutions, which takes into account the  dependence of the coordination number of cations on the composition  of the oxide melt. The activity of components in metal melts conjugated with oxide systems were determined by Wagner’s theory using the  parameters of the first order interaction. Equilibrium constants values  for the steel deoxidation reactions are installed indirectly by thermodynamic calculations. On the basis of the obtained data the components  solubility surface in the metal melts of Fe – Mg – Al – La – O system  was constructed, which allowed to determine the liquid metal composition regions associated with the corresponding oxide phase.

About the Authors

G. G. Mikhailov
South Ural State University.
Russian Federation

 Dr. Sci. (Eng.), Professor, Head of the Chair of Material Science and Physical Chemistry of Materials. 

 Chelyabinsk.



L. A. Makrovets
South Ural State University.
Russian Federation

Engineer of the Chair of Material Science and Physical Chemistry of Materials. 

 Chelyabinsk.



L. A. Smirnov
Institute of Metallurgy, UB RAS.
Russian Federation

 Academician of Russian Academy of Sciences (RAS), Dr. Sci. (Eng.), Chief Researcher. 

 Ekaterinburg.



References

1. Lunev  V.V.,  Shul’te  Yu.V.  The  use  of  complex  ligatures  with  REM and AEM for improving the properties of cast and deformed  steels. In: Vliyanie kompleksnogo raskisleniya na svoistva stalei: Tematicheskii otraslevoi sb. MChM SSSR [Effect of complex deoxidation on the properties of steels: Thematic branch collection of  MChM USSR]. Moscow: Metallurgiya, 1982, pp. 33–50. (In Russ.).

2. Smirnov L.A., Rovnushkin V.A., Oryshchenko A.S., Kalinin G.Y.,  Milyuts V.G. Modification of steel and alloys with rare-earth elements. Part 1. Metallurgist. 2016, vol. 59, no. 11-12, pp. 1053–1061.

3. Smirnov L.A., Rovnushkin V.A., Oryshchenko A.S., Kalinin G.Y.,  Milyuts V.G. Modification of steel and alloys with rare-earth elements. Part 2. Metallurgist. 2016, vol. 60, no. 1-2, pp. 38-46.

4. Charalampides G., Vatalis K.I., Apostoplos B., Ploutarch-Nikolas  B. Rare Earth Elements: Industrial Applications and Economic  Dependency of Europe. International Conference on Applied Economics (ICOAE) 2015. Procedia Economics and Finance. 2015,  vol. 24, pp. 126–135.

5. Ryabchikov I.V . Modifikatory i tekhnologii vnepechnoi obrabotki zhelezouglerodistykh splavov [Modifiers and technologies for secondary treatment of iron-carbon alloys]. Moscow: EKOMET, 2008,  400 p. (In Russ.).

6. Burmasov  S.P.,  Gudov A.G.,  Murzin A.V.,  Dresvyankina  L.E.,  Toporov V.A. Effect of technology for modification with calcium  and ree on pipe steel nonmetallic inclusion morphology and production properties. Metallurgist. 2016, vol. 59, no. 11-12, pp. 69–73. 

7. Golubtsov V.A., Voronin A.A., Tetyuev T.V., Roshchin V.E., Usmanov R.G. Origin of nonmetallic inclusions and ways of alleviating their contamination of steel. Metallurg. 2005, no. 4, pp. 73–77.  (In Russ.).

8. Pan F., Zhang J., Chen H.-L., Su Y.-H., Su Y.-H., Hwang W.-S.  Thermodynamic calculation among cerium, oxygen, and sulfur in  liquid iron. Scientific Reports. 2016, vol. 6, pp. 35843. 

9. Golubtsov V.A., Ryabchikov I.V., Usmanov R.G. Mikrokristallicheskie kompleksnye modifikatory v proizvodstve stali [Microcrystalline complex modifiers in the production of steel]. Chelyabinsk:  Izd. tsentr YuUrGU, 2017, 137 p. (In Russ.).

10. Grigorovich K.V., Shibaeva T.V., Arsenkin A.M. Effect of a pipesteel killing technology on the composition and number of nonmetallic  inclusions.  Russian Metallurgy (Metally).  2011,  no.  9,  pp.  929–933.

11. Opiela M., Grajcar A. Modification of non-metallic inclusions by  rare-earth elements in microalloyed steels. Archives of Foundry Engineering. 2012, vol. 12, no. 2, pp. 129–134. 

12. Averin V.V. Application of REM in metallurgy of steel. In: Metallurgicheskie metody povysheniya kachestva stali [Metallurgical methods for improving the quality of steel]. Moscow: 1979,   pp.  33–40. (In Russ.).

13. Zhalybin V.I., Ershov G.S. On recovery of magnesium of lining in  casting of steel alloyed with aluminum. Izvestiya AN SSSR. Metally.  1966, no. 1, pp. 49–53. (In Russ.).

14. Skok Yu.Ya. Study of deoxidizing ability of complex alloys containing AEM and REM. Protsessy lit’ya. 2010, no. 3 (81), pp. 8–12. (In  Russ.).

15. Kasińska J. Influence of rare earth metals on microstructure and inclusions morphology G17CrMo5-5 cast steel. Arch. Metall. Mater.  2014, no. 59, pp. 993–996. 

16. Minkova N., Aslania S. Isomorphic Substitutions in the CeO2– La2O3 System at 850 °C. Cryst. Res. Technol. 1989, vol. 24, no. 4,  pp. 351–354.

17. Hamm C.M., Alff L, Albert B. Synthesis of microcrystalline Ce2O3  and formation of solid solutions between cerium and lanthanum oxides. Z. Anorg. Allg. Chem. 2014, vol. 640, no. 6, pp. 1050–1053.

18. Andrievskaya E.R., Kornienko O.A., Sameljuk A.V., Sayi A. Phase  relation studies in the CeO2–La2O3 system at 1100 – 1500 °C. Journal of the European Ceramic Society. 2011, vol. 31, no. 7, pp.  1277–1283.

19. Mikhailov G.G., Leonovich B.I., Kuznetsov Yu.S. Termodinamika metallurgicheskikh protsessov i system [Thermodynamics of metallurgical processes and systems]. Moscow: ID MISiS, 2009, 519 p.  (In Russ.).

20. Barzakovskii V.P., Lapin V.V., Boikova A.I., Kurtseva N.N. Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. Vypusk 4: Troinye oksidnye sistemy [State diagrams of silicate systems. Refe rence  book. Issue 4: Triple oxide systems]. Leningrad: Nauka, 1974,  514  p. (In Russ.).

21. Slag Atlas. 2nd Edition. Edited by Verein Deutscher Eisenhüttenleute (VDEh). Düsseldorf: Verlag Stahleisen GmbH., 1995, pp. 44.

22. Mikhailov G.G., Makrovets L.A., Smirnov L.A. Thermodynamic  modeling of phase equilibria with oxide systems containing REM.  Message 1. State diagramms of La2O3 oxide systems. Vestnik YuUrGU. Seriya Metallurgiya. 2014, vol. 14, no. 3, pp. 5–11. (In  Russ.).

23. Wu P., Pelton A.D. Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems. Journal of Alloys and Compounds. 1992, vol. 179, no. 1-2, pp. 259–287.

24. Mikhailov G.G., Makrovets L.A. Phase equilibria in interaction of  barium with the components of liquid steel. Vestnik YuUrGU. Seriya Metallurgiya. 2014, vol. 14, no. 2, pp. 5–10. (In Russ.).

25. Bůžek Z. Základní termodynamické údaje o metalurgických reakcích a o interakcích prvků v soustavách významných pro hutnickou  teorii a praxi. Hutnické actuality. 1979, vol. 20, no. 1-2, pp. 3–111.

26. Balkovoi Yu.V., Aleev R.A., Bakanov V.K. Parametry vzaimodeistviya pervogo poryadka v rasplavakh na osnove zheleza: Obzor. inform [Parameters of first order interaction in iron-based melts: Information overview]. Moscow: Chermetinformatsiya, 1987, 42 p.  (In Russ.).

27. Steelmaking data sourcebook, Japan Society for the Promotion of Science. The 19th Committee on Steelmaking. Gordon and Breach  Science Publishers. NY, 1988, pp. 288–289. 

28. Wang L.J., Liu Y.Q., Wang Q., Chou K.C. Evolution mechanisms  of MgO·Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway. ISIJ International. 2015, vol. 55, no. 5,  pp.  970–975.

29. Park J.H., Todoroki H. Control of MgO·Al2O3 spinel inclusions in  stainless steels. ISIJ International. 2010, vol. 50, no. 10, pp.  1333–1346.

30. Mikhailov G.G., Makrovets L.A., Smirnov L.A. Thermodynamic  modeling of lanthanum interaction processes using iron-based  metallic melts. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2015, vol. 58, no. 12, pp. 877–884.  (In Russ.).


Review

For citations:


Mikhailov G.G., Makrovets L.A., Smirnov L.A. THERMODYNAMICS OF THE PROCESSES OF INTERACTION OF LIQUID METAL COMPONENTS IN Fe – Mg – Al – La – O SYSTEM. Izvestiya. Ferrous Metallurgy. 2018;61(6):460-465. (In Russ.) https://doi.org/10.17073/0368-0797-2018-6-460-465

Views: 860


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)