Preview

Известия Высших Учебных Заведений. Черная Металлургия

Расширенный поиск

СОПРОТИВЛЕНИЕ РАЗРУШЕНИЮ ПЕРЕХОДНОЙ ЗОНЫ ТРЕХСЛОЙНОГО МАТЕРИАЛА СТАЛЬ – ВАНАДИЕВЫЙ СПЛАВ – СТАЛЬ ПОСЛЕ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ

https://doi.org/10.17073/0368-0797-2018-6-447-453

Полный текст:

Аннотация

Создание нового конструкционного материала для оболочек ТВЭЛ атомных реакторов на быстрых нейтронах является актуальной  задачей современной атомной энергетики. В последние годы был разработан трехслойный радиационностойкий и коррозионностойкий  материал на основе ванадиевого сплава и коррозионной стали, потенциально удовлетворяющий требованиям работы оболочек ТВЭЛов  быстрых реакторов в сверхжестких условиях эксплуатации (высоких температур, радиационного облучения и агрессивных сред). Важнейшим аспектом, определяющим работоспособность этого материала при эксплуатации, является качество соединения слоев различных материалов между собой, определяемое режимами деформационно-термической обработки. В настоящей работе изучено влияние  отжига на химический состав, структуру и сопротивление разрушению зоны соединения ванадиевого сплава со сталью в трехслойной  трубе сталь  –  ванадиевый сплав – сталь, полученной совместным горячим прессованием трехслойной трубной заготовки при 1100 °С.  В  качест  ве компонентов трубы использовали сталь 20Х13 для наружных слоев и ванадиевый сплав V – 4Ti – 4Cr для сердцевины. Структуру и  химичес кий состав в зоне соединения слоев исследовали методами оптической микроскопии и электронной микроскопии с микрорентгеноспектральным анализом. Прочность зоны соединения сталь – ванадиевый сплав оценивали при испытании на сжатие кольцевого  трехслойного образца с надрезом с измерением акустической эмиссии (АЭ). Показано, что при совместном прессовании между ванадиевым сплавом и сталью формируется «переходная» зона диффузионного взаимодействия переменного химического состава толщиной  10  –  15  мкм, которая представляет собой непрерывный ряд твердых растворов, без выделения хрупких фаз, что обеспечивает прочное соединение в трехслойном материале. На границе соединения сталь – ванадиевый сплав пор, расслоений и дефектов не обнаружено. Однако  при испытаниях на сжатие полукольцевых трехслойных образцов с надрезом после совместного горячего прессования в стальном слое в  вершине надреза образуется трещина. Отжиг при температуре 800 °С благоприятно влияет на формирование «переходной» зоны за счет  увеличения толщины зоны диффузионного взаимодействия, вследствие чего при механических испытаниях трехслойный материал ведет  себя как монолит без образования трещин и расслоений на границе между стальным и ванадиевым слоями.

Об авторах

Т. А. Нечайкина
Национальный исследовательский технологический университет «МИСиС».
Россия

к.т.н., доцент кафедры металловедения и физики прочности.  

119049, Россия, Москва, Ленинский пр., 4.



С. А. Никулин
Национальный исследовательский технологический университет «МИСиС».
Россия

д.т.н., заведующий кафедрой металловедения и физики прочности.

119049, Россия, Москва, Ленинский пр., 4.



С. О. Рогачев
Национальный исследовательский технологический университет «МИСиС».
Россия

к.т.н., доцент кафедры металловедения и физики прочности.

119049, Россия, Москва, Ленинский пр., 4.



В. Ю. Турилина
Национальный исследовательский технологический университет «МИСиС».
Россия

к.т.н., доцент кафедры металловедения и физики прочности.

119049, Россия, Москва, Ленинский пр., 4.



А. П. Баранова
Национальный исследовательский технологический университет «МИСиС».
Россия

учебный мастер.

119049, Россия, Москва, Ленинский пр., 4.



Список литературы

1. Smith D.L., Chung H.M., Loomis B.A., Witzenburg W. Van. Development of vanadium-base alloys for fusion first-wall – blanket applications // Journal of Fusion Engineering and Design. 1995. Vol. 29. P. 399 – 410.

2. Nagasaka T., Muroga T., Fukumoto K., Watanabe H., Grossbeck M.L., Chen J. Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials // Nuclear Fusion. 2006. Vol. 46. P. 618 – 625.

3. Bray T.S., Tsai H., Nowicki L.J., Billone M.C., Smith D.L., Johnson W.R., Trester P.W. Tensile and Impact Properties of V–4Cr–4Ti Alloy Heats 832665 and 832864 // Journal of Nuclear Materials. 2000. Vol. 283-287. P. 633 – 636.

4. Votinov S.N., Kolotushkin V.P., Nikulin S.A., Turilina V.Y. Making vanadium-based radiation-resistant alloys for fast-neutron reactor pin sheaths // Metal Science and Heat Treatment. 2009. Vol. 51. P. 238 – 244.

5. Rowcliffe A.F., Zinkle S.J., Hoelzer D.T. Effect of Strain Rate on the Tensile Properties of Unirradiated and Irradiated V–4Cr–4Ti // Journal of Nuclear Materials. 2000. Vol. 283-287. P. 508 – 512.

6. Votinov S.N., Solonin M.I., Kazennov Yu.I., Kondratjev V.P. Prospects and problems using vanadium alloys as a structural material of the first wall and blanket of fusion reactors // Journal of Nuclear Materials. 1996. Vol. 233. P. 370 – 375.

7. Fukumoto K., Narui M., Matsui H., Nagasaka T., Muroga T., Li M., Hoelzer D.T., Zinkle S.J. Environmental effects for irradiation creep behavior of highly purified V–4Cr–4Ti alloys (NIFS-Heats) irradiated by neutrons // Journal of Nuclear Materials. 2009. Vol. 386-388. P. 575 – 578.

8. Kurtz R.J., Abe K., Chernov V.M., Hoelzer D.T., Matsui H., Muro ga T., Odette G.R. Recent Progress on Development of Vanadium Al loys for Fusion // Journal of Nuclear Materials. 2004. Vol. 329-333. P. 47 – 55.

9. Muroga T., Nagasaka T., Abe K., Chernov V.M., Matsui H., Smith D.L., Xu Z.-Y., Zinkle S.J.. Vanadium Alloys – Overview and Recent Results // Journal of Nuclear Materials. 2002. Vol. 307-311. P. 547 – 554.

10. Fukumoto K., Matsui H., Narui M., Yamazaki M. Irradiation creep behavior of V–4Cr–4Ti alloys irradiated in a liquid sodium environment at the JOYO fast reactor // Journal of Nuclear Materials. 2013. Vol. 437. P. 341 – 349.

11. Li X., Zhang C., Zhao J., Johansson B. Mechanical properties and defective effects of bcc V–4Cr–4Ti and V–5Cr–5Ti alloys by firstprinciples simulations // Computational Materials Science. 2011. Vol. 50. P. 2727 – 2731.

12. Loomis B.A., Kestel B.J., Smith D.L. Microstructural evolution and yield stress increase for ion-irradiated V–15Cr–5Ti alloys // Journal of Nuclear Materials. 1988. Vol. 155-157. P. 1305 – 1309.

13. Aoyagi K., Torres E.P., Suda T., Ohnuki S. Effect of hydrogen accumulation on mechanical property and microstructure of V-Cr-Ti alloys // Journal of Nuclear Materials. 2000. Vol. 283-287. P. 876 – 879.

14. Chen J., Qiu S., Yang L., Xu Z., Deng Y., Xu Y . Effects of oxygen, hydrogen and neutron irradiation on the mechanical properties of several vanadium alloys // Journal of Nuclear Materials. 2002. Vol. 302. P. 135 – 142.

15. Natesan K., Soppet W.K., Uz M. Effects of Oxygen and Oxidation on Tensile Behavior of V–4Cr–4Ti // Journal of Nuclear Materials. 1998. Vol. 258-263. P. 1476 – 1481.

16. Matsushima T., Satou M., Hasegawa A., Abe K., Kayano H. Tensile properties of a series of V–4Ti–4Cr alloys containing small amounts of Si, Al and Y , and the influence of helium implantation // Journal of Nuclear Materials. 1998. Vol. 258-263. P. 1497 – 1501.

17. Heo N.J., Nagasaka T., Muroga T., Matsui H. Effect of Impurity Levels on Precipitation Behavior in the Low-activation V–4Cr–4Ti Alloys // Journal of Nuclear Materials. 2002. Vol. 307-311. P. 620 – 624.

18. Nikulin S.A., Rozhnov A.B., Nechaikina T.A., Rogachev S.O., Za vodchikov S.Yu., Khatkevich V.M. Structure and mechanical properties of the three-layer material based on a vanadium alloy and corrosion-resistant steel // Russian Metallurgy (Metally). 2014. Vol. 2014. P. 793 – 799.

19. Nikulin S.A., Rozhnov A.B., Nechaikina T.A., Rogachev S.O., Votinov S.N., Zavodchikov S.Yu. Combined Technique for Estimating the Quality of Joining the Layers in Three-Layer Pipes // Russian Metallurgy (Metally). 2014. Vol. 2014. P. 347 – 350.

20. Khanzhin V.G. Designing computer systems for acoustic emission materials testing // Metal Science and Heat Treatment. 2009. Vol. 51. P. 245 – 249.

21. Khanzhin V.G., Nikulin S.A., Belov V.A., Turilina V.Yu., Rozhnov A.B. Hydrogen embrittlement of steels: I. Analysis of the process kinetics using acoustic emission measurements // Russian Metallurgy (Metally). 2013. Vol. 2013. P. 308 – 312.

22. Nikulin S.A., Rozhnov A.B., Rogachev S.O., Nechaykina T.A., Anike enko V.I., Turilina V.Yu. Improvement of mechanical properties of large-scale low-carbon steel cast products using spray quenching // Materials Letters. 2016. Vol. 185. P. 499 – 502.


Для цитирования:


Нечайкина Т.А., Никулин С.А., Рогачев С.О., Турилина В.Ю., Баранова А.П. СОПРОТИВЛЕНИЕ РАЗРУШЕНИЮ ПЕРЕХОДНОЙ ЗОНЫ ТРЕХСЛОЙНОГО МАТЕРИАЛА СТАЛЬ – ВАНАДИЕВЫЙ СПЛАВ – СТАЛЬ ПОСЛЕ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ. Известия Высших Учебных Заведений. Черная Металлургия. 2018;61(6):447-453. https://doi.org/10.17073/0368-0797-2018-6-447-453

For citation:


Nechaikina T.A., Nikulin S.A., Rogachev S.O., Turilina V.Y., Baranova A.P. FRACTURE RESISTANCE OF “TRANSITION” AREA IN THREE-LAYER STEEL/VANADIUM ALLOY/STEEL COMPOSITE AFTER THERMOMECHANICAL TREATMENT. Izvestiya. Ferrous Metallurgy. 2018;61(6):447-453. (In Russ.) https://doi.org/10.17073/0368-0797-2018-6-447-453

Просмотров: 65


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)