Preview

Izvestiya. Ferrous Metallurgy

Advanced search

CHALLENGES AND OPPORTUNITIES OF UTILIZATION OF ASH AND SLAG WASTE OF TPP (THERMAL POWER PLANT). PART 1

https://doi.org/10.17073/0368-0797-2018-6-439-446

Abstract

 The further development of the Russian coal industry, especially in the regions of Siberia and the Far East, in line with the  Energy Strategy, predetermines the need to address the problem of  utilization of ash and slag wastes in newly implemented projects.  The total amount of ash and slag in the ash dumps in Russia is more  than 1.5  billion tons, and the area occupied by fly ash and slag wastes  (FASW) is more than 220 km2. At the same time, the degree of FASW  use does not exceed 10  %. It is shown that the main solutions for the  recycling of the industrial solid waste generated by thermal power  plants are their use in the production of building materials, road construction, or the complex processing of FASW with the extraction  of metals and the production of building mate rials either. Some fly  ash can be used in agriculture. The physicochemical properties of  fly ash and slag wastes and, accordingly, the directions of their use,  as well as the choice of technology, are determined by the mineral  part of the fossil coals and the way they are burned. To use fly ash in  the construction industry, it is necessary to transfer the ash removal  system to the dry method, accompanied, on the one hand, by a large  volume of capital investments in equipment and facilities for storage,  classification, crushing and grinding, the transfer of new physical and  chemical properties to fly ash and slag waste, and on the other side,  an increase in organizational and transport barriers. Examples of proposed technologies for utilization of ash and slag wastes in the form of metal recovery and production of building materials are given. To  obtain iron-containing concentrates, one-stage magnetic separation  is used, but the quality of the concentrate does not meet modern requirements. The most technologically effective for the extraction of  metals from ash and slag wastes are technologies based on flotation  methods. At the same time, it follows from the provided data that  their application can be limited to economic, organizational factors  and the emergence of new environmental risks. The conclusion is  made on the possibility of using the above technologies for existing  coal-fired power plants only with state support.

About the Authors

G. S. Podgorodetskii
National University of Science and Technology “MISIS” (MISIS).
Russian Federation

Cand. Sci. (Eng.), Director of the Scientific and Educational Center “Innovative Metallurgical Technologies”. 

Moscow.



V. B. Gorbunov
National University of Science and Technology “MISIS” (MISIS).
Russian Federation

Cand. Sci. (Eng.), Deputy Director of the Scientific and Educational Center “Innovative Metallurgical Technologies”. 

Moscow.



E. A. Agapov
National University of Science and Technology “MISIS” (MISIS).
Russian Federation

Engineer of the Scientific and Educational Center “Innovative Metallurgical Technologies”.

Moscow.



T. V. Erokhov
National University of Science and Technology “MISIS” (MISIS).
Russian Federation

Engineer of the Scientific and Educational Center “Innovative Metallurgical Technologies”.

Moscow.



O. N. Kozlova
National University of Science and Technology “MISIS” (MISIS).
Russian Federation

Engineer of the Scientific and Educational Center “Innovative Metallurgical Technologies”.

Moscow.



References

1. Proekt Energeticheskoi strategii Rossii na period do 2035 goda (redaktsiya ot 01.02.2017) [Project of energetic strategy of Russia  for the period up to 2035 (edition from 01.02.2017)]. Available at  URL: https://minenergo.gov.ru/node/1920. (Accessed 15.03.2018).  (In Russ.).

2. Prognoz razvitiya energetiki mira i Rossii 2016 [Forecast for development of energy sector in the world and in Russia, 2016]. Makarov  A.A. ed. Moscow: INEN RAN-ATs pri pravitel’stve RF, 2016,  200 p. (In Russ.).

3. Reiting regionov po urovnyu energodostatochnosti. RIAREITING [Rating of regions by level of energy sufficiency. RIAREITING]. Available at URL: http://vid1.rian.ru/ig/ratings/energodeficit012017.pdf. (Accessed 15.03.2018). (In Russ.).

4. Investitsionnaya programma OAO «RusGidro» na 2015 – 2019 gody. Prilozhenie 3 k Biznes-planu OAO «RusGidro» na 2015 – 2019 gody  [Investment program of JSC “RusGidro” for 2015  – 2019. Annex 3 to  the Business plan of JSC “RusGidro” for 2015  – 2019]. Available at  URL: http://www.rushydro.ru/upload/iblock/4cb/IP-2015-2019-dlyarazmesheniya-na-sajte.pdf. (Accessed 23.03.2018). (In Russ.).

5. Delitsyn L.M. Prezentatsiya doklada, predstavlennogo na Uchenom Sovete OIVT RAN 16 noyabrya 2015 goda [Presentation of the report  presented at the Scientific Council of the OIVT RAS, November 16,  2015]. Available at URL: http://jiht.ru/science/science_council/lecture_detail.php?ID=58463 (Accessed 23.03.2018). (In Russ.).

6. Volzhenskii A.V., Ivanov I.A., Vinogradov B.N. Primenenie zol i toplivnykh shlakov v proizvodstve stroitel’nykh materialov [Application of fly ash and fuel slag in production of building materials].  Moscow: Stroiizdat, 1984, 225 p. (In Russ.).

7. Putilin E.I., Tsvetkov V.S. Primenenie zol unosa i zoloshlakovykh smesei pri stroitel’stve avtomobil’nykh dorog. Obzornaya informatsiya otechestvennogo i zarubezhnogo opyta primeneniya otkhodov ot szhiganiya tverdogo topliva na TES [Application of fly ash  and ash-slag mixtures in construction of automobile roads. Overview of domestic and foreign experience in application of waste  from solid fuel burning at TPP]. Moscow: FGUP “SOYuZDORNII”,  2003, 58 p. (In Russ.).

8. Dvorkin L. I. Stroitel’nye materialy iz otkhodov promyshlennosti. Uchebno-spravochnoe posobie [Building materials from industrial  wastes. Manual]. Rostov-on-Don: Izd-vo “Feniks”, 2007, 368 p. (In  Russ.).

9. Shpirt M.Ya., Artem’ev V.B., Silyutin S.A. Ispol’zovanie tverdykh otkhodov dobychi i pererabotki uglei: Biblioteka gornogo inzhe nera. T. 5 “Pererabotka i obogashchenie mineral’nogo syr’ya” Kn. 3 [Usage of solid wastes of coal mining and processing: Library of mining  engineer, Vol. 5 “Processing and enrichment of mineral raw materials”. Book 3)]. Moscow: “Gornoe delo”, 2013, 432 p. (In Russ.).

10. Bespalov V.I., Bespalova S.U., Vagner M.A. Prirodookhrannye tekhnologii na TES: uchebnoe posobie [Environmental technologies  at TPP: Manual. 2nd ed.]. Tomsk: Tomskii politekhnicheskii universitet, 2010, 240 p. (In Russ.).

11. Putilov V.Ya., Putilova I.V . Konditsionirovanie zoloshlakov energetiki v Rossii. Razdel 3. Obrashchenie s zoloshlakami. 3.4. Konditsionirovanie i upravlenie kachestvom zoloshlakov [Conditioning of  ash and slag of energetics in Russia. Section 3. Treatment of ash and  slag. 3.4. Conditioning and quality management of ash and slag].  Available at URL: http://osi.ecopower.ru/ru/2010-11-28-18-46-37. html. (Accessed 28.03.2018). (In Russ.). 

12. Galibina E.A. Classification of pulverized ash depending on material composition, providing its rational use for building materials production. In: Stroitel’naya teplofizika. Dolgovechnost’ konstruktsii. Issledovaniya po stroitel’stvu. NII str-va Gosstroya ESSR [Building  thermophysics. Durability of structures. Research in construction  NII str-va Gosstroya ESSR]. Tallin: Valgus, 1981, 132 p.

13. Kalachev A.I. Kompleksnaya sistema utilizatsii ZShM [Complex  system of ash and slag utilization]. Available at URL: http://ksfenix. org/files/fenix-web-ru.pdf. (Accessed 25.03.2018). (In Russ.).

14. Salomatov V.V. Clean TPP with vortex technology for burning of  the  Kansk-Achinsk  coals.  Novoe v rossiiskoi elektroenergetike. 2014, no. 3, pp. 14–29. (In Russ.).

15. Vishnya  B.L.  Tekhnologii granulyatsii zoly. Perspektivy primeneniya na ugol’nykh TES. Prezentatsiya. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya Ugol’Eko 2016. 27−28 sentyabrya 2016, Moskva, NIU “MEI” [Technologies of ash granulation.  Prospects of application at coal TPP. Presentation. Int. Sci. and  Pract. Conf. Ugol’Eco 2016. 27–28 September, 2016, Moscow,  NIU  “MEI”]. Available  at  URL:  http://coaleco.ru/news/coaleco2016-presentations. (Accessed 23.03.2018). (In Russ.).

16. Ladygichev M.G., Chizhikova V.M. Syr’e dlya chernoi metallurgii. Spravochnoe izdanie: V 2-kh tomakh. T. 2. Ekologiya metallurgicheskogo proizvodstva [Raw materials for ferrous metallurgy.  Reference book: In 2 vols. Vol. 2. Ecology of metallurgical production]. Moscow: Teplotekhnik, 2005, 448 p. (In Russ.).

17. Gusev K.P., Larichkin V.V., Larichkina N.I. Prospects of ash and slag  wastes application of the Siberian thermal power industry in production of pavement stone. Izvestiya Samarskogo tsentra Rossiiskoi akademii nauk. 2011, vol. 13, no. 1(8), pp. 2058–2061. (In Russ.).

18. Cherepanov A.A. Complex processing of ash and slag wastes of TPP  (results of laboratory and semi-industrial tests). Geologiya i poleznye iskopaemye Mirovogo okeana. 2009, no. 2, pp. 98–115. (In Russ.).

19. Yao Z.T. A review of the alumina recovery from coal fly ash, with a  focus in China. Fuel. 2014, march (120), pp. 74–85.

20. Shamrai E.I., Taskin A.V., Ivannikov S.I., Yudakov A.A. Investigation of complex processing possibilities of wastes of energy companies of the Primorsky Krai. Sovremennye naukoemkie tekhnologii.  2017, no. 3, pp. 68–75. (In Russ.).

21. Arsent’ev V.A. New technology of dry enrichment of fly ash from  coal-fired power plants on the basis of applied mineralogy methods. Zapiski Gornogo instituta. 2016, vol. 220, pp. 521–525. (In  Russ.).

22. Delitsyn L.M., Ryabov Yu.V., Vlasov A.S. Potential technologies of ash utilization. Energosberezhenie. 2014, no. 2, pp. 60. (In  Russ.).

23. Ezhova N.N., Vlasov A.S., Sudareva S.V., Delitsyn L.M. Ash and  slag waste from thermal power plants as a raw material commodity  for ferrous and non-ferrous metallurgy. Ekologiya promyshlennogo proizvodstva. 2010, no. 2, pp. 45–52. (In Russ.).

24. Delitsyn L.M., Ryabov Yu.V., Vlasov A.S. New enrichment technology for processing of coal-fired power plants ash in production of  alumina and other commercial products. Ekologiya promyshlennogo proizvodstva. 2012, no. 1, pp. 74–79. (In Russ.).

25. Yudovich Ya.E., Ketris M.P. Tsennye elementy-primesi v uglyakh  [Valuable impurity elements in coals]. Ekaterinburg: UrO RAN,  2006, 538 p. (In Russ.).

26. Alekseiko  L.N.,  Taskin A.V.,  Cherepanov A.A., Yudakov A.A.  Complex processing of ash and slag wastes of TPP. Khabarovsk and  Birobidzhan. Sovremennaya nauka. 2016, no. 1 (17), pp. 21–34. (In  Russ.).

27. Solov’yanov A.A. Past (accumulated) environmental damage: problems and solutions. Sources and types of pollution. Ekologicheskii vestnik Rossii. 2015, no. 3, pp. 46–52. (In Russ.).

28. Shevtsov V.R. Strategiya povtornogo vozobnovleniya resursov iz zoloshlakovykh otkhodov teploelektrostantsii [Strategy of resumption of resources from TPP ash and slag wastes. 2010]. 2010. Available at URL: http://www.sibacc.ru/upload/iblock/fc8/11.pdf. (Accessed 04.04.2018). (In Russ.).

29. Tselykovskii Yu.K. Ecological and economic aspects of utilization  of TPP ash and slag. Energiya: ekonomika, tekhnika, ekologiya.  2006, no. 4, pp. 27–34. (In Russ.).


Review

For citations:


Podgorodetskii G.S., Gorbunov V.B., Agapov E.A., Erokhov T.V., Kozlova O.N. CHALLENGES AND OPPORTUNITIES OF UTILIZATION OF ASH AND SLAG WASTE OF TPP (THERMAL POWER PLANT). PART 1. Izvestiya. Ferrous Metallurgy. 2018;61(6):439-446. (In Russ.) https://doi.org/10.17073/0368-0797-2018-6-439-446

Views: 2663


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)