IMPREGNATION OF SUBSTRATES OF TUNGSTEN MONOCARBIDE WITH LOW CARBON STEEL USING CONTACT AND NON-CONTACT METHODS
https://doi.org/10.17073/0368-0797-2018-5-407-412
Abstract
The article presents a study of the interaction of tungsten monocarbide and carbon steel by contact and non-contact methods. Substrates of compressed powder of tungsten carbide, sintered in a vacuum furnace, were impregnated with carbon steel with certain chemical composition. The whole process was recorded on a high-speed video camera that allows to measure the contact angle of the experiment at any time. The practical study was conducted on the experimental complex in the center of high-temperature studies of the Research Institute of Casting (Foundry Research Institute, Krakow, Poland). The experimental course and microstructures of obtained substrates were represented. The study of the chemical composition of tungsten monocarbide reaction products with low carbon steel was carried out by a scanning electron microscope “Jeol JSM-6460 LV”. According to the study of all areas on the substrate sections it can be observed the same structure, consisting of three phases: the grains of tungsten carbide and iron-carbon-tungsten compounds with different iron content. On the edge regions, adjacent to the upper face can be seen more of Fe – C – W-compounds with iron content of 22.86 % – 23.68 %. This is because these areas impregnation occurred at the last turn, and dissolved the iron carbide to a greater extent than in other areas. In areas of direct interaction between the substrate and the metal clearly identified tungsten carbide grains, bonded together by molten iron (with different content of iron in different phases). On both samples on horizontal surfaces of the substrates in the region adjacent to the absorption field, partially iron film covering is observed over the sample surface. Boundary zone horizontal surfaces of substrates are completely covered with iron film, under which the tungsten carbide grains are located. Despite the use of different methods of studying the interaction of tungsten monocarbide with low carbon steel (contact and contactless heating), a significant difference is not observed between the structure of the samples.
About the Authors
I. V. ChumanovRussian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair of the General Metallurgy
A. N. Anikeev
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of the General Metallurgy
References
1. Harris I.R., Jones I.P. Grain boundaries: their character, characterization and influence on properties. London: Institute of Materials, 2001.
2. Chumanov I.V., Chumanov V.I., Anikeev A.N. Preparation of precipitation-strengthened hollow billets for rotary dispersers. Metallurgist. 2011, vol. 55, pp. 439–443.
3. Chumanov I.V., Kareva N.T., Chumanov V. I., Anikeev A.N. Study and analysis of the structural constituents of billets hardened by fine-grained particles and formed by centrifugal casting. Russian Metallurgy (Metally). 2012, vol. 6, pp. 540–543.
4. Shul’ga A.V. Kompozity. Chast’ 1: Osnovy materialovedeniya kompozitsionnykh materialov [Composites. Part. 1: Foundations of materials science composite materials]. Moscow: NIYaU MIFI, 2013, 96 p. (In Russ.).
5. Tarnopol’skii Yu. M., Zhigun I. G., Polyakov V. A. Prostranstvenno-armirovannye kompozitsionnye materialy: Spravochnik [Spatially-reinforced composite materials: Handbook]. Moscow: Mashinostroenie, 1987, 224 p. (In Russ.).
6. Baumann K., Bernst R., Braune G. Werkstoffe mit Zukunft: Perspektiven volkswirtschaftlich wichtiger Werkstoffe. Neiman A. Hrsg., 1977, 256 S. (Russ.ed.: Neiman A. Materialy budushchego: perspektivnye materialy dlya narodnogo khozyaistva. Leningrad: Khimiya, 1985, 239 p.).
7. Chuvil’deev V.N., Moskvicheva A.V., Boldin M.S. Electro pulse plasma sintering of nanostructured tungsten carbide and hard alloys based on it. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013, no. 2 (2), pp. 115–119. (In Russ.).
8. Grigorovich V.K., Sheftel’ E. N. Dispersionnoe uprochnenie tugoplavkikh metallov [Dispersion hardening of refractory metals]. Mos-cow: Nauka, 1988, 296 p. (In Russ.).
9. Komshukov V.P., Foigt D.B., Cherepanov A.N., Amelin A.V. Modifying continuous-cast steel with refractory nanopowder. Steel in Translation. 2009, vol. 39, no. 4, pp. 363–365.
10. Gurevich Yu.G., Narva V.K., Frage N.R. Karbidostali [Carbide steels]. Moscow: Metallurgiya, 1988, 144 p. (In Russ.).
11. Fedorchenko I.M., Andrievskii R.A. Osnovy poroshkovoi metallurgii [Fundamentals of powder metallurgy]. Kiev: AN USSR, 1961, 420 p. (In Russ.).
12. Zaitsev A.A., Vershinnikov V.I., Panov V.S., Levashov E.A., Borovinskaya I.P., Konyashin I.Yu., Rupasov S.I., Patsera E.I., Shumenko V.N., Zamulaeva E.I. Influence of technological parameters of sintering on the structure and properties of VK5hard alloy of SVS- tungsten powder of. Izvestiya VUZov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2013, no. 3, pp. 21–27. (In Russ.).
13. Summ B.D., Goryunov Yu.V. Fiziko¬khimicheskie osnovy smachivaniya i rastekaniya [Physico-chemical fundamentals of wetting and spreading]. Moscow: Khimiya, 1976, 232 p. (In Russ.).
14. Kostikov V.I., Antipov V.I., Krivtsun V.M., Koshelev Yu. The study of wetting of carbon materials by melts of metal matrix. In: Kompozitsionnye materialy: Sbornik trudov [Composite materials: The collection of works]. Moscow: Nauka, 1981, pp. 89-92. (In Russ.).
15. Libenson G.A. Protsessy poroshkovoi metallurgii. T. 2. Formovanie i spekanie [Powder metallurgy processes. Vol. 2. Molding and sin-tering]. Moscow: MISiS, 2002, 320 p. (In Russ.).
16. Sobczak N., Nowak R., Radziwill W., Budzioch J., Glenz A. Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering A. 2008, vol. 495(1-2), pp. 43–49.
17. Anikeev A.N., Bigeev A.V., Gordeev E.N., Chumanov V.I., Chumanov I.V. On the possibility of the introduction of solid refractory particles at billets production by centrifugal casting. Vestnik Yuzhno¬Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya. 2009, no. 36 (169), pp. 24–27.
18. Chumanov I.V., Anikeev A.N., Chumanov V.I. Fabrication of functionally graded materials by introducing wolframium carbide dispersed particles during centrifugal casting and examination of FGM’s structure. Procedia Engineering. 2015, vol. 129, pp. 816–820.
19. Sobczak N. Some methodological aspects of high temperature ca pillarity phenomena investigations. Part I. Transactions of the Foundry Research Institute. 1994, vol. XLIV (4), pp. 221–238.
20. Eustathopoulos N., Sobczak N., Passerone A., Nogi K. Measurements of contact angle and work of adhesion at high temperatures. Materials Science. 2005, vol. 40 (9/10), pp. 2271–2280.
Review
For citations:
Chumanov I.V., Anikeev A.N. IMPREGNATION OF SUBSTRATES OF TUNGSTEN MONOCARBIDE WITH LOW CARBON STEEL USING CONTACT AND NON-CONTACT METHODS. Izvestiya. Ferrous Metallurgy. 2018;61(5):407-412. (In Russ.) https://doi.org/10.17073/0368-0797-2018-5-407-412