Preview

Izvestiya. Ferrous Metallurgy

Advanced search

IMPREGNATION OF SUBSTRATES OF TUNGSTEN MONOCARBIDE WITH LOW CARBON STEEL USING CONTACT AND NON-CONTACT METHODS

https://doi.org/10.17073/0368-0797-2018-5-407-412

Abstract

The article presents a study of the interaction of tungsten monocarbide and carbon steel by contact and non-contact methods. Substrates of compressed powder of tungsten carbide, sintered in a vacuum furnace, were impregnated with carbon steel with certain chemical composition. The whole process was recorded on a high-speed video camera that allows to measure the contact angle of the experiment at any time. The practical study was conducted on the experimental complex in the center of high-temperature studies of the Research Institute of Casting (Foundry Research Institute, Krakow, Poland). The experimental course and microstructures of obtained substrates were represented. The study of the chemical composition of tungsten monocarbide reaction products with low carbon steel was carried out by a scanning electron microscope “Jeol JSM-6460 LV”. According to the study of all areas on the substrate sections it can be observed the same structure, consisting of three phases: the grains of tungsten carbide and iron-carbon-tungsten compounds with different iron content. On the edge regions, adjacent to the upper face can be seen more of Fe – C – W-compounds with iron content of 22.86  %  –  23.68  %. This is because these areas impregnation occurred at the last turn, and dissolved the iron carbide to a greater extent than in other areas. In areas of direct interaction between the substrate and the metal clearly identified tungsten carbide grains, bonded together by molten iron (with different content of iron in different phases). On both samples on horizontal surfaces of the substrates in the region adjacent to the absorption field, partially iron film covering is observed over the sample surface. Boundary zone horizontal surfaces of substrates are completely covered with iron film, under which the tungsten carbide grains are located. Despite the use of different methods of studying the interaction of tungsten monocarbide with low carbon steel (contact and contactless heating), a significant difference is not observed between the structure of the samples.

About the Authors

I. V. Chumanov
Zlatoust branch of the South Ural State University, Zlatoust
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair of the General Metallurgy


A. N. Anikeev
Zlatoust branch of the South Ural State University, Zlatoust
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of the General Metallurgy


References

1. Harris I.R., Jones I.P. Grain boundaries: their character, characterization and influence on properties. London: Institute of Materials, 2001.

2. Chumanov I.V., Chumanov V.I., Anikeev A.N. Preparation of precipitation-strengthened hollow billets for rotary dispersers. Metallurgist. 2011, vol. 55, pp. 439–443.

3. Chumanov I.V., Kareva N.T., Chumanov V. I., Anikeev A.N. Study  and analysis of the structural constituents of billets hardened by fine-grained particles and formed by centrifugal casting. Russian Metallurgy (Metally). 2012, vol. 6, pp. 540–543.

4. Shul’ga A.V. Kompozity. Chast’ 1: Osnovy materialovedeniya kompozitsionnykh materialov [Composites. Part. 1: Foundations of materials science composite materials]. Moscow: NIYaU MIFI, 2013,  96 p. (In Russ.).

5. Tarnopol’skii  Yu.  M.,  Zhigun  I.  G.,  Polyakov  V.  A.  Prostranstvenno-armirovannye kompozitsionnye materialy: Spravochnik [Spatially-reinforced  composite  materials:  Handbook].  Moscow:  Mashinostroenie, 1987, 224 p. (In Russ.).

6. Baumann K., Bernst R., Braune G. Werkstoffe mit Zukunft: Perspektiven volkswirtschaftlich wichtiger Werkstoffe. Neiman A. Hrsg.,  1977, 256 S. (Russ.ed.: Neiman A. Materialy budushchego: perspektivnye materialy dlya narodnogo khozyaistva. Leningrad: Khimiya,  1985, 239 p.).

7. Chuvil’deev  V.N.,  Moskvicheva A.V.,  Boldin  M.S.  Electro  pulse  plasma  sintering  of  nanostructured  tungsten  carbide  and  hard  alloys  based  on  it.  Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013, no. 2 (2), pp. 115–119. (In Russ.).

8. Grigorovich V.K., Sheftel’ E. N. Dispersionnoe uprochnenie tugoplavkikh metallov [Dispersion hardening of refractory metals]. Mos-cow: Nauka, 1988, 296 p. (In Russ.).

9. Komshukov V.P., Foigt D.B., Cherepanov A.N., Amelin A.V. Modifying  continuous-cast  steel  with  refractory  nanopowder.  Steel in Translation. 2009, vol. 39, no. 4, pp. 363–365.

10. Gurevich  Yu.G.,  Narva  V.K.,  Frage  N.R.  Karbidostali  [Carbide  steels]. Moscow: Metallurgiya, 1988, 144 p. (In Russ.).

11. Fedorchenko I.M., Andrievskii R.A. Osnovy poroshkovoi metallurgii [Fundamentals of powder metallurgy]. Kiev: AN USSR, 1961,  420 p. (In Russ.).

12. Zaitsev A.A., Vershinnikov V.I., Panov V.S., Levashov E.A., Borovinskaya I.P., Konyashin I.Yu., Rupasov S.I., Patsera E.I., Shumenko V.N., Zamulaeva E.I. Influence of technological parameters of  sintering on the structure and properties of VK5hard alloy of SVS-  tungsten powder of. Izvestiya VUZov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2013, no. 3, pp. 21–27. (In Russ.).

13. Summ B.D., Goryunov Yu.V. Fiziko¬khimicheskie osnovy smachivaniya i rastekaniya [Physico-chemical  fundamentals  of  wetting  and spreading]. Moscow: Khimiya, 1976, 232 p. (In Russ.).

14. Kostikov V.I., Antipov V.I., Krivtsun V.M., Koshelev Yu. The study  of wetting of carbon materials by melts of metal matrix. In: Kompozitsionnye materialy: Sbornik trudov [Composite materials: The  collection of works]. Moscow: Nauka, 1981, pp. 89-92. (In Russ.).

15. Libenson G.A. Protsessy poroshkovoi metallurgii. T. 2. Formovanie i spekanie [Powder metallurgy processes. Vol. 2. Molding and sin-tering]. Moscow: MISiS, 2002, 320 p. (In Russ.).

16. Sobczak N., Nowak R., Radziwill W., Budzioch J., Glenz A. Experimental  complex  for  investigations  of  high  temperature  capillarity  phenomena.  Materials Science and Engineering A.  2008,  vol.  495(1-2), pp. 43–49.

17. Anikeev A.N., Bigeev A.V., Gordeev E.N., Chumanov V.I., Chumanov I.V. On the possibility of the introduction of solid refractory  particles at billets production by centrifugal casting. Vestnik Yuzhno¬Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya.  2009, no. 36 (169), pp. 24–27. 

18. Chumanov I.V., Anikeev A.N., Chumanov V.I. Fabrication of functionally  graded  materials  by  introducing  wolframium  carbide  dispersed particles during centrifugal casting and examination of FGM’s  structure. Procedia Engineering. 2015, vol. 129, pp.  816–820.

19. Sobczak  N.  Some  methodological  aspects  of  high  temperature  ca pillarity  phenomena  investigations.  Part  I.  Transactions of the Foundry Research Institute. 1994, vol. XLIV (4), pp. 221–238.

20. Eustathopoulos N., Sobczak N., Passerone A., Nogi K. Measurements of contact angle and work of adhesion at high temperatures.  Materials Science. 2005, vol. 40 (9/10), pp. 2271–2280.


Review

For citations:


Chumanov I.V., Anikeev A.N. IMPREGNATION OF SUBSTRATES OF TUNGSTEN MONOCARBIDE WITH LOW CARBON STEEL USING CONTACT AND NON-CONTACT METHODS. Izvestiya. Ferrous Metallurgy. 2018;61(5):407-412. (In Russ.) https://doi.org/10.17073/0368-0797-2018-5-407-412

Views: 577


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)