Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INFLUENCE OF BENDING EFFORTS OF WORKING ROLLS ON WIDENING OF THE THIN STEEL STRIP DURING HOT ROLLING

https://doi.org/10.17073/0368-0797-2018-5-348-356

Abstract

Based on the Jourdain variation principle, a mathematical model of the process of free widening in hot rolling of thin sheet metal is developed. The principle applies to rigid-plastic materials and for the cinematically admissible area of speeds. As a functional of the variational equation, sum of the powers of internal resistances, frictional forces, shear forces, front and back tension was used. When solving the Jourdain variational equation for the case of rolling with tension, the Ritz method was applied. The Jourdain variational equation was transformed into a system of homogeneous equations, the left side of each represented a derivative with respect to a varying parameter. Varying parameters were the exponent of the kinematic condition, general widening in the plastic deformation zone and the widening in its neutral section. The developed model allows to study the distribution of the widening on length of the deformation zone depending on the parameters of rolling process and sheet metal. To test the adequacy of the developed free-widening model, experimental studies were carried out on a two-roll cold rolling mill. Lead samples were rolled, the measured widening values of which coincided with the theoretical calculated with an accuracy of less than 10%. Cold rolling of lead samples simulates hot rolling. Theoretical analysis of the influence of tension on the process of free widening when applying tension is consistent with the practical results presented in the literature. It is shown that the unevenness of tensile stresses in the input and output sections of the deformation zone arising from the application of tension causes the appearance of additional powers in the power balance equation, leading to a decrease in magnitude of the widening. The resulting unevenness of the tensile stresses can be used to control magnitude of the widening in thin-sheet rolling. In turn, unevenness of the tensile stresses along the width of rolled strip can be increased or decreased by means of the bending forces of work rolls of the rolling stand. The article presents a scheme for controlling the value of the rolling band widening during hot rolling with the help of bending forces of work rolls.

About the Authors

T. Koinov
University of Chemical Technology and Metallurgy, Sofia
Bulgaria
Dr. Sci. (Eng.), Professor of the Chair of Physical Metallurgy and Thermal Equipment


S. M. Bel’skii
Lipetsk State Technical University, Lipetsk
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Metal Forming”


Yu. A. Mukhin
Lipetsk State Technical University, Lipetsk
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair “Metal Forming“


V. B. Chuprov
Lipetsk State Technical University, Lipetsk
Russian Federation
Cand. Sci. (Eng.), Director of Metallurgical Institute


References

1. Hu J., Marciniak Z., Duncan J. Mechanics of Sheet Metal Forming.  Butterworth-Heinemann, 2002, 211 p. 

2. Banabic D. Multiscale modeling in sheet metal forming. Springer,  2016, 405 p. 

3. Wilko C. E. Formability. A review of parameters and processes that control, limit or enhance the formability of sheet metal. Springer,  2011, 112 p. 

4. Lin  J.,  Balint  D.,  Pietrzyk  M.  Microstructure evolution in metal forming processes. Woodhead Publishing, 2012, 416 p. 

5. Tarnovskii  I.Ya.,  Rimm  E.R.  Widening  and  power  consumption  during the rolling in smooth rollers with tension. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy.  1964,  no. 7, pp. 96–103. (In Russ.).

6. Bel‘skii S.M., Tret‘yakov V.A., Baryshev V.V., Kudinov S.V. Study  of formation of slab’s width of in the roughing group of wideband  mill. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 1998, no. 1, pp. 24–29. (In Russ.).

7. Skorokhodov  V.N.,  Chernov  P.P.,  Mukhin  Yu.A.,  Bel’skij  S.M.  Mathematical model of process of free spreading during strip rolling. Stal’. 2001, no. 3, pp. 38–40. (In Russ.).

8. Vydrin V.N., Batin Yu.T. Study of the influence of strain (support)  on  lateral  deformation.  In:  Teoriya i tekhnologiya prokatki: sb. nauch. tr. [ Theory and technology of rolling: Coll. of sci. works].  Issue 54. Chelyabinsk, 1968, pp. 220-224. (In Russ.).

9. Tselikov A.I., Tomlenov A.D., Zyuzin V.I., Tret’yakov A.V., Niki-tin  G.S.  Teoriya prokatki. Spravochnik [Theory  of  rolling.  Handbook]. Moscow: Metallurgiya, 1982, 335 p. (In Russ.).

10. Grigoryan  G.G.,  Kotsar’  S.L.,  Zheleznov  Yu.D.  Account  of  deformation scheme in the analysis of forming process of sheet rolling. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metal lurgy. 1976, no. 7, pp. 88–92. (In Russ.).

11. Shinkin  V.  N.  The  mathematical  model  of  the  thick  steel  sheet  flattening  on  the  twelve-roller  sheet-straightening  machine.  Massage 1. Curvature of sheet. CIS Iron and Steel Review. 2016, vol. 12,  pp. 37–40. 

12. Shinkin V. N. The mathematical model of the thick steel sheet flattening on the twelve-roller sheet-straightening machine. Massage 2.  Forces  and  moments.  CIS Iron and Steel Review.  2016,  vol.  12,  pp. 40–44. 

13. Shinkin V. N. Calculation of steel sheet’s curvature for its flattening  in  the  eight-roller  straightening  machine.  Chernye Metally.  2017,  no. 2, pp. 46–50. 

14. Shinkin V.N.  Calculation  of  bending  moments  of  steel  sheet  and  support reactions under flattening on the eight-roller straightening  machine. Chernye Metally. 2017, no. 4, pp. 49–53. 

15. Shinkin  V.  N.  Asymmetric  three-roller  sheet-bending  systems  in  steel-pipe  production.  Steel in Translation.  2017,  vol.  47,  no.  4,  pp. 235–240. 

16. Muhin U., Belskij S., Makarov E. Simulation of accelerated strip  cooling on the hot rolling mill run-out roller table. Frattura ed In-tegrita Strutturale. 2016, vol. 37, pp. 305–311. 

17. Muhin U., Belskij S., Makarov E. Application of between- stand  cooling  in  the  production  hot-rolled  strips.  Frattura ed Integrita Strutturale. 2016, vol. 37, pp. 312–317. 

18. Muhin U., Belskij S. Study of the influence between the strength  of antibending of working rolls on the widening during hot rolling  of thin sheet metal. Frattura ed Integrita Strutturale. 2016, vol. 37,  pp. 318–324. 

19. Kang S.-J. Sintering. Densification, grain growth and microstructure. Butterworth-Heinemann, 2004, 280 p. 

20. Banabic D. Multiscale modeling in sheet metal forming. Springer,  2016, 405 p. 

21. Hu J., Marciniak Z., Duncan J. Mechanics of Sheet Metal Forming.  Butterworth-Heinemann, 2002, 211 p. 

22. Shinkin V. N. Calculation of technological parameters of O-forming  press for manufacture of large-diameter steel pipes. CIS Iron and Steel Review. 2017, vol. 13, pp. 33–37. 

23. Shinkin V.N. Mathematical model of technological parameters’ calculation  of  flanging  press  and  the  formation  criterion  of  corrugation defect of steel sheet’s edge. CIS Iron and Steel Review. 2017,  vol. 13, pp. 44–47. 

24. Shinkin V.N. Failure of large-diameter steel pipe with rolling scabs.  Steel in Translation. 2017, vol. 47, no. 6, pp. 363–368. 

25. Lenard J.G. Metal Forming Science and Practice. Elsevier Science,  2002, 378 p. 

26. Hingole R.S. Advances in metal forming. Expert system for metal forming. Springer, 2015, 116 p. 

27. Qin Y. Micromanufacturing engineering and technology. William  Andrew, 2015, 858 p. 

28. Predeleanu M., Ghosh S.K. Materials processing defects. Vol. 43.  Elsevier Science, 1995, 434 p. 

29. Groshkova  A.L.,  Polulyakh  L.A.,  Travyanov  A.Ya.,  Dashevskii VYa., Yusfin Yu.S. Phosphorus distribution between phases in  smelting high-carbon ferromanganese in the blast furnace. Steel in Translation. 2007, vol. 37, no. 11, pp. 904–907. 

30. Podgorodetskii G.S., Yusfin Yu.S., Sazhin A.Yu., Gorbunov V.B.,  Polulyakh L.A. Production of generator gas from solid fuels. Steel in Translation. 2015, vol. 45, no. 6, pp. 395–402. 

31. Orelkina O.A., Petelin A.L., Polulyakh L.A. Distribution of secondary gas emissions around steel plants. Steel in Translation. 2015,  vol. 45, no. 11, pp. 811–814. 

32. Polulyakh L.A., Dashevskii V.Ya., Yusfin Yu.S. Manganese-ferroalloy production from Russian manganese ore. Steel in Translation.  2014, vol. 44, no. 9, pp. 617–624. 

33. Calladine C.R. Plasticity for engineers. Theory and applications.  Woodhead Publishing, 2000, 328 p.

34. Chakrabarty J. Theory of plasticity. Butterworth-Heinemann, 2006,  896 p. 

35. Bhattacharyya D. Composite sheet forming. Vol. 11. Elsevier Science, 1997, 530 p. 

36. Predeleanu M., Gilormini P. Advanced methods in materials processing defects. Vol. 45. Elsevier Science, 1997, 422 p. 

37. Abe T., Tsuruta T. Advances in engineering plasticity and its applications (AEPA’96). Pergamon, 1996, 938 p. 


Review

For citations:


Koinov T., Bel’skii S.M., Mukhin Yu.A., Chuprov V.B. INFLUENCE OF BENDING EFFORTS OF WORKING ROLLS ON WIDENING OF THE THIN STEEL STRIP DURING HOT ROLLING. Izvestiya. Ferrous Metallurgy. 2018;61(5):348-356. (In Russ.) https://doi.org/10.17073/0368-0797-2018-5-348-356

Views: 588


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)