Preview

Izvestiya. Ferrous Metallurgy

Advanced search

SHS TECHNOLOGY OF COMPOSITION FERROALLOYS PART I. METALLURGICAL SHS PROCESS. SYNTHESIS OF FERROVANADIUM AND FERROCHROMIUM NITRIDES

https://doi.org/10.17073/0368-0797-2018-5-339-347

Abstract

The article presents research findings in the development of a  specialized SHS technology for composite ferrous alloys for steel melting and blast furnace iron-making. To resolve the principle goal of creating metallurgical production lines it was developed a new approach to practical implementation of the SHS method – a metallurgical SHS process. The metallurgical version of SHS is based on using different metallurgical alloys as the main raw stock; those include dust-type wastes of ferrite alloys production. In this case, the process of synthesis by combustion is implemented via exothermic exchange reactions. Here, composite materials form; they are based on inorganic compositions bound with iron and/or an alloy based on iron. It has been shown that depending on the aggregate state of source reagents, metallurgical SHS processes can be gasless, gasabsorbing or gas-yielding. Combustion modes for these processes largely differ. To arrange for metallurgical SHS process in weakly exothermic systems, one can use different versions of the thermal bonding principle. The authors have investigated self-propagating high-temperature synthesis of nitrided ferrovanadium and ferrochrome. It has been shown that the phase composition of the source alloy has strong impact on the consistent behaviors of the combustion flow and the combustion mechanism of ferrovanadium (if combustion is taking place in nitrogen atmosphere). In the course of nitriding σ-(Fe – V), process activation takes place; the activation is related to the transformation of the intermetallide into α-solid solution when the phase transition temperature is reached (~1200  °C). The composition structure of ferrovanadium nitride products is formed by the confluence of solid-liquid droplet-particles that consist of molten Fe and solid vanadium nitride. A 3-phase mechanism of ferrochrome interaction with nitrogen facilitates the achievement of a high degree of nitriding. It was shown that the combustion rates of ferrochrome (and chrome) during nitriding in coflow filtration mode increase as the nitrogen flow rate is increased. Here, the degree of ferrochrome nitriding during forced filtration (4.7  –  7.5  %  N) is much less than that during non-forced filtration (8.8  –  14.2  %  N).

About the Authors

M. Kh. Ziatdinov
National Research Tomsk State University
Russian Federation
Dr. Sci. (Eng.), Senior Researcher


I. M. Shatokhin
LLC “NTPF “Etalon”, Magnitogorsk
Russian Federation
Dr. Sci. (Eng.), General Director


L. I. Leont’ev
Baikov Institute of Metallurgy and Materials Science, RAS; Scientific Council on Metallurgy and Metal Science of Russian Academy of Sciences (Department of Chemistry and Material Sciences); National University of Science and Technology “MISIS” (MISIS)
Russian Federation
Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher


References

1. Merzhanov A.G., Mukas’yan A.C. Tverdoplamennoe gorenie [Solid-flame combustion]. Moscow: TORUS PRESS. 2007, 336 p. (In  Russ.).

2. Merzhanov A.G. Fundamentals, achievements, and perspectives for  development of solid-flame combustion. Russian Chemical Bulletin.  1997, vol. 46, no. 1, pp. 1–27.

3. Merzhanov  A.G.,  Borovinskaya  I.P.  A  new  class  of  combustion  processes.  Combust. Sci. And Technol.  1975,  vol.  10,  no.  5-6,   pp.  195–201.

4. Merzhanov A.G.  SHS  on  the  pathway  to  industrialization.  Int. J. SHS. 2001, vol. 10, no. 2, pp. 237–256.

5. Gasik  M.I.,  Lyakishev  N.P.,  Emlin  B.I.  Teoriya i tekhnologiya proizvodstva ferrosplavov [Theory and process engineering of ferro-alloys]. Moscow: Metallurgiya, 1988, 784 p. (In Russ.).

6. Mizin V.G., Chirkov N.A., Ignat’ev V.S. etc. Ferrosplavy: Spravochnoe izdanie [Ferroalloys:  Handbook].  Moscow:  Metallurgiya,  1992, 415 p. (In Russ.).

7. Naiborodenko  Yu.S.,  Itin  V.I.,  Ushakov  A.G.,  Merzhanov  A.G.,  Borovinskaya  I.P.,  Maslov V.M.  etc.  Sposob obrabotki poroshkoobraznykh materialov [A method for powder materials processing]. Certificate of authorship USSR no. 420394 SSSR. Byulleten’ izobretenii. 1974, no. 11. (In Russ.).

8. Dubrovin A.S. Metallothermic processes in ferrous metallurgy. In:  Sb.:  Protsessy goreniya v khimicheskoi tekhnologii i metallurgii  [Combustion  processes  in  chemical  technology  and  metallurgy].  Chernogolovka, 1975, pp. 29–42. (In Russ.).

9. Lyakishev N.P., Pliner Yu.R., Ignatenko G.F., Lappo S.I. Alyuminotermiya [Aluminothermy]. Moscow: Metallurgiya, 1978, 424 p.  (In Russ.).

10. Maslov V.M., Borovinskaya I.P., Ziatdinov M.Kh. Combustion of  the  systems  niobium–aluminum  and  niobium–germanium.  Com-bust. Explos. Shock Waves. 1979, vol. 15, no. 1, pp. 41–47.

11. Ziatdinov  M.Kh.,  Shatokhin  I.M.  SHS  technology  of  ferroalloys  nitriding.  In:  Proc. Int. Congress INFACON XII, Helsinki,  2010,  pp.  899–909. 

12. Ziatdinov  M.Kh.,  Maksimov  Yu.M.,  Kolmakov A.D.  etc.  Metallic composition and method of its manufacture. Pat. 2080785 GB. Pat.3011962 DE. Int. cl. C22C 1/04. B22F 3/12. C22C29/00. Publ. 24.04.1983

13. Manashev  I.R.,  Shatokhin  I.M.,  Ziatdinov  M.Kh.,  Bigeev  V.A.  Micro alloying of steel with boron and the development of ferrotitanium boride. Steel in Translation. 2009, vol. 39, no. 10, pp. 896–900.

14. Zajac S., Lagneborg R., Siwecki T. The role of nitrogen in micro-alloyed steels. In: Proceedings of the International Conference on “Microalloying 95”, Pittsburgh, 11¬14 June 1995, pp. 321–340. 

15. Berns H. Manufacture and application of high nitrogen steels. ISIJ International. 1996, vol. 36, no. 7, pp. 909–914. 

16. Liimatainen  J.  Powder  metallurgically  produced  high  nitrogen  steels. Material Science Forum. 1999, vols. 318-320, pp. 629–634.

17. Hanninen H.E. Application and performance of high nitrogen steels.  Steel GRIPS. 2004, no. 2, pp. 371–380.

18. Gan Yong, Dong Han. Review of application of vanadium in steel.  In: Proceedings of International Seminar on Production and Application of High Strength Seismic Grade Rebar Containing Vanadium. Beijing. China. June. 2010, pp. 1–11.

19. Heckmann C.J., Ormston D., Grimpe F. etc. Development of low  carbon Nb-Ti-B microalloyed steels for high strength large diameter  linepipe. Iron and Steelmaking. 2005, no. 4, pp. 57–60.

20. Tsuji N., Matsubara Y., Sakai T., Saito Y. Effect of boron on the  microstructure of hot-deformed Ti-added interstitial free steel. ISIJ International. 1997, vol. 37, no. 8, pp. 797–806.

21. Kitchingman W.J.,  Bedford  G.M.  Mechanism  and  transformation  kinetics of the alpha → sigma phase transformation in iron-vanadium alloys. Metal Science Journal. 1971, vol. 5, no. 1, pp. 121–125.

22. Jun Ichi Seki, Masuo Hagiwara, Tomoo Suzuki. Metastable order-disorder transition and sigma phase formation in Fe-V binary alloys.  Journal of Materials Science. 1979, vol. 14, no. 10, pp. 2404–2410.

23. www.nitrovan.com.

24. Ziatdinov M.Kh. Chromium combustion in a nitrogen coflow. Com-bust. Explos. Shock Waves. 2016, vol. 52, no. 4, pp. 418–426.

25. Krastev D. Nitriding of ferroalloys. In: VI¬th International Metallurgical Congress, Ohrid. Macedonia. May 2014, pp. 1–6.


Review

For citations:


Ziatdinov M.Kh., Shatokhin I.M., Leont’ev L.I. SHS TECHNOLOGY OF COMPOSITION FERROALLOYS PART I. METALLURGICAL SHS PROCESS. SYNTHESIS OF FERROVANADIUM AND FERROCHROMIUM NITRIDES. Izvestiya. Ferrous Metallurgy. 2018;61(5):339-347. (In Russ.) https://doi.org/10.17073/0368-0797-2018-5-339-347

Views: 868


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)