Preview

Izvestiya. Ferrous Metallurgy

Advanced search

MODELING OF METALIZED PELLETS FIRING WITH THE ACCOUNT OF PHYSICO-CHEMICAL TRANSFORMATIONS IN THEM

https://doi.org/10.17073/0368-0797-2018-4-288-293

Abstract

The engineering mathematical model of development of physical and chemical transformations is considered in the volume of pellet, consisting of granules of iron-stone, limestone and coke (carbon-containing fuel). It is shown that according to the experimental information there are mathematical models, using the three-stage chart of renewal. Strict mathematical description of process of renewal on this chart requires the joint decision of kinetics tasks of successiveparallel reactions and diffusion of multicomponent gas in the pores of ore piece. Such approach cannot be used in the mathematical model of process of metallised pellets burning because of its complication. This complication increases at the account of characteristic feature of the gas and temperature mode of burning machine, producing metallised pellets: change of gas composition during material movement (transition from an oxidizing atmosphere to restoration or neutral). For the decision of the task of ore granule renewal it is important to know the distribution curves of the concentrations of reducing agents and gaseous reaction products along the radius. Because of complication of the equalizations of diffusion, heating of granules and chemical kinetics, the close method of decision of Stefan problem, developed by L.S.  Leybenzon, is used, essence of which is in supposition, quasi stationary distribution has time in the volume of granule to be set. All oxide reduction reactions occur not on the surface of the micropores of the corresponding granule layer, but on the frontal surfaces separating these layers and the restoration of the central volume of the original magnetite does not develop until the neighboring hematite region is recovered to Fe3 O4 . At  such conditions all complication of the simplified mathematical model is compensated by the proper choice of algorithm of numeral decision of the equalizations system. As a row of simplifications doesn’t correspond to reality (for example, the layer of metallic iron is not skipped by a gas-reducer), it is necessary to use effective coefficients, the value of which is set during the model adaptation.

About the Authors

V. S. Shvydkii
Ural Federal University named after the first President of Russia B.N.  Yeltsin, Ekaterinburg
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Thermal Physics and Informatics in Metallurgy”


Yu. G. Yaroshenko
Ural Federal University named after the first President of Russia B.N.  Yeltsin, Ekaterinburg
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Thermal Physics and Informatics in Metallurgy”


N. A. Spirin
Ural Federal University named after the first President of Russia B.N.  Yeltsin, Ekaterinburg
Russian Federation
Dr. Sci. (Eng.), Head of the Chair “Thermal Physics and Informatics in Metallurgy”


V. V. Lavrov
Ural Federal University named after the first President of Russia B.N.  Yeltsin, Ekaterinburg
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Thermal Physics and Informatics in Metallurgy”


References

1. Shvydkii V.S., Yaroshenko Yu.G., Spirin N.A., Lavrov V.V. Mathematical model of burning process of coal-ore pellets on conveyor  machine. Izvestiya VUZov. Chernaya metallurgiya. = Izvestiya. Ferrous Metallurgy. 2017, no. 4, pp. 12–24. (In Russ.). 

2. Esin O.A., Gel’d P.V. Fizicheskaya khimiya pirometallurgicheskikh protsessov.Ch.1 [Physical chemistry of pyrometallurgical processes. Part 1]. Sverdlovsk: Metallurgizdat, 1962, 671 p. (In Russ.).

3. Szekely J., Evans J.W., Sohn H.Y. Solid – gas reactions. N.Y.: Academic Press, 1976, 400 p.

4. Babushkin  N.M., Timofeev V.N.  Fuel  burning  in  sintering  mixture  layer.  In:  Teplotekhnika domennogo i aglomeratsionnogo protsessov: Sb. nauchn.trudov VNIIMT, no. 14 [Heat engineering  of blast furnace and agglomeration processes. Coll. of sci. works  of VNIIMT, no. 14]. Moscow: Metallurgiya, 1966, pp. 139–159.  (In Russ.).

5. Takahashi Y.,  Takahashi  R.  Reduction  of  iron  pellets  by  using  a  labo ratory scale moving bed reactor at high pressure. In: Proc. of 8th Joint Japan – USSR. Symposium on Physical Chemistry of Metallurgical Processes. Tokyo, 1981, pp. 78–92.

6. Ekonomos M. Solid phase reactions in ferrites. In: Kinetika vysokotemperaturnykh protsessov [Kinetics of high-temperature processes]. Kingery W.D. ed. Moscow: Metallurgiya, 1965, pp. 168–180.  (In Russ.).

7. Yagi I., Szekely J. Mathematical formulation on iron oxide pellets in  moving beds with nonuniform gas and solids flow. Trans. Iron and Steel Inst. Japan. 1977, no. 10, pp. 569–575. 

8. Abramov  S.D.,  Alekseev  L.F.,  Kudinov  D.Z.,  Chentsov  A.V.,  Shavrin S.V. Makrokinetika vosstanovleniya zhelezorudnykh mate-rialov gazami: matematicheskoe opisanie [Macrokinetics of reduction of iron ore materials by gases: mathematical description]. Mos-cow: Nauka, 1982, 105 p. (In Russ.).

9. Frank-Kamenetskii D.A. Diffuziya i teploperedacha v khimicheskoi kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow:  Nauka, 1987, 492 p. (In Russ.).

10. Bokovikov B.A. Calculating methods for layer processes and metal-lization units and their development. In: Fizikokhimiya pryamogo polucheniya zheleza [Physicochemistry of direct iron production].  Moscow: Nauka, 1977, pp. 84–87. (In Russ.).

11. Bokovikov  B.A.,  Povolotskii  V.Yu.,  Gimmel’farb  A.I.,  Nemenov  A.M. Analysis of the mine recovery process using the mathematical  model.  In:  Pryamoe poluchenie zheleza i poroshkovaya metallurgiya: Tematich. otrasl. sb. no. 1 [Direct iron production and  powder metallurgy: Thematic industrial coll. no. 1]. Moscow: Me-tallurgiya, 1974, pp. 107–113. (In Russ.).

12. Rostovtsev S.T. Teoriya metallurgicheskikh protsessov [Theory of  metallurgical processes]. Moscow: Metallurgizdat, 1956, 514 p. (In  Russ.).

13. Funghini A.,  Fontana  P.,  Marchi  G.  De.  In: The  operation  of  the  blast furnace: theory and practice. Arles, 1980, vol. 2, pp. 2.1–2.6.

14. Bogdandy L., Engell H.-J. Die Reduktion der Eisenerze. Duesseldorf:  Springer  Verlag,  1967,  539  p.  (Russ.ed.:  Bogdandy  L.,  En-gell  H.-J.  Vosstanovlenie zheleznykh rud.  Moscow:  Metallurgiya,  1971, 519 p.).

15. Rubinshtein L.I. Problema Stefana [Stephan problem]. Riga: Zvaigzne, 1967, 457 p.

16. Patankar Suhas V. Numerical Heat Transfer and Fluid Flow. New  York: Hemisphere Publishing Corporation, 1980. (Russ.ed.: Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti. Moscow: Energoatomizdat, 1984, 152 p.).

17. Spirin  N.A.,  Lavrov  V.V.,  Rybolovlev  V.Yu.  Matematicheskoe mode lirovanie metallurgicheskikh protsessov v ASU TP [Mathematical modeling of metallurgical processes in the automated process  control system]. Spirin N.A. ed. Ekaterinburg: OOO “UIPTs”, 2014,  558 p. (In Russ.).

18. Shvydkii V.S., Spirin N.A., Ladygichev M.G., Yaroshenko Yu.G.,  Gordon  Ya.M.  Elementy teorii sistem i chislennye metody mo-delirovaniya protsessov teplomassoperenosa: uchebnik dlya vuzov  [Elements of systems theory and numerical modeling methods of  processes of heat and mass transfer]. Moscow: Intermet-Inzhiniring,  1999, 520 p. (In Russ.).

19. Zhukhovitskii A.A., Shvartsman L.A. Fizicheskaya khimiya: uchebnik dlya vuzov [Physical chemistry: Textbook for universities]. Mos-cow: Metallurgiya, 1987, 688 p. (In Russ.).

20. Shih Tien-Mo. Numerical Heat Transfer. Hemisphere Pub. Corp.,  Washington, 1984, 563 p. (Russ.ed.: Shih T. Chislennye metody v zadachakh teploobmena. Moscow: Mir, 1988, 544 p.).


Review

For citations:


Shvydkii V.S., Yaroshenko Yu.G., Spirin N.A., Lavrov V.V. MODELING OF METALIZED PELLETS FIRING WITH THE ACCOUNT OF PHYSICO-CHEMICAL TRANSFORMATIONS IN THEM. Izvestiya. Ferrous Metallurgy. 2018;61(4):288-293. (In Russ.) https://doi.org/10.17073/0368-0797-2018-4-288-293

Views: 592


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)