Preview

Izvestiya. Ferrous Metallurgy

Advanced search

INVESTIGATION AND DEVELOPMENT OF WELDING FLUXES WITH THE USE OF LADLE ELECTRIC-FURNACE SLAG AND BARIUM-STRONTIUM MODIFIER FOR ROLLS SURFACING

https://doi.org/10.17073/0368-0797-2018-4-274-279

Abstract

Analysis of existing methods to increase the stability of rolls calibers has shown that one of the most effective methods is surfacing with solid or powdered wires, which is confirmed by the numerous research materials of domestic and foreign authors on improving the compositions of powder wires and welding fluxes. A promising direction in terms of reducing the cost of surfacing materials production and ensuring their required technological properties is the development of new compositions of powder wires and fluxes based on man-made metallurgical wastes. Experimental studies carried out within the framework of the development of this direction show the principal possibility and effectiveness of the use of barium-strontium carbonatite in the manufacture of welding fluxes based on ladle electric-furnace slags. When conducting laboratory studies on surfacing of steel samples, a barium-strontium flux was used. An additive was prepared in two ways: a barium-strontium modifier mixed with liquid glass and a barium-strontium fraction modifier of less than 0.2  mm. According to the data obtained, when using different variants of flux compositions with varying proportions of the above components, a satisfactory quality of the deposited layer macrostructure is ensured and the contamination of the welded joint is reduced by such nonmetallic inclusions as silicates that are not deformed, point oxides and silicates are brittle.

About the Authors

N. A. Kozyrev
Siberian State Industrial University, Novokuznetsk, Kemerovo Region
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair of “Materials, Foundry and Welding Production”


R. E. Kryukov
Siberian State Industrial University, Novokuznetsk, Kemerovo Region
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Materials, Foundry and Welding Production”


A. A. Umanskii
Siberian State Industrial University, Novokuznetsk, Kemerovo Region
Russian Federation
Cand. Sci. (Eng.), Assist. Professor, Director of the Center for Сollective Use “Materials Science”


A. R. Mikhno
Siberian State Industrial University, Novokuznetsk, Kemerovo Region
Russian Federation
MA Student of the Chair of "Materials, Foundry and Welding Production"


L. V. Dumova
Siberian State Industrial University, Novokuznetsk, Kemerovo Region
Russian Federation
MA Student of the Chair of "Materials, Foundry and Welding Production"


References

1. Traino  A.I.  Rational  modes  of  operation  and  restoration  of  mill  rolls. Stal’. 2008, no. 10, pp. 86–91. (In Russ.).

2. Ogarkov N.N., Belyaev A.I. Stoikost’ i kachestvo prokatnykh valkov  [Stability and quality of mill rolls]. Magnitogorsk: MGTU, 2008,  131 p. (In Russ.).

3. Titarenko V.I., Golyakevich A.A., Orlov L.N. etc. Recovery surfacing of rolls of rolling mills by flux-cored wire. Svarochnoe proizvodstvo. 2013, no. 7, pp. 29–32. (In Russ.).

4. Kondratiev  I.A.,  Ryabtsev  I.A.  Flux-cored  wires  for  surfacing  of  steel rollers for hot rolling. The Paton Welding Journal. 2014, no.  6,  pp. 95–96. 

5. Shebanits E.N., Omelyanenko N.I.,  Kurakin Y.N.,  Matvienko  V.N.,   Leshchinskii L.K.,  Dubinskii B.E.,  Stepnov K.K. Improving the  fracture  toughness  and  wear  resistance  of  hard-faced  hot-rolling-mill rolls. Metallurgist. 2012, vol. 56, no. 7-8, pp. 613–617.

6. Crespo A.C., Puchol R.Q., Goncalez L.P. etc. Obtaining a submerged  arc welding flux of the MnO – SiO2 – CaO – Al2O3 – CaF2 system by fusion. Welding International. 2007, vol. 21, no. 7, pp.  502–511. 

7. Kozyrev  N.A.,  Kibko  N.V.,  Umanskii  A.A.,  Titov  D.A.,  Niki-tin  A.G. New C–Si–Mn–Cr–V–Mo powder wires for roller surfacing. Steel in Translation. 2016, vol. 46, no. 10, pp. 711–717.

8. Kozyrev N.A., Kibko N.V., Umanskii A.A., Titov D.A., Bashchenko L.P. Composition of C – Si – Mn – Cr – W – V powder wire  and quality of surfacing. Steel in Translation. 2016, vol. 46, no. 11,  pp.  781–787.

9. Kozyrev N.A., Igushev I.F., Titov D.A. etc. Poroshkovaya provoloka [Flux cored wire]. Patent RF no. 2518211. IPC В 23 К 35/368.  Byulleten’ izobretenii. 2014, no. 16. (In Russ.).

10. Kozyrev N.A., Igushev I.F., Titov D.A. etc. Poroshkovaya provoloka [Flux cored wire]. Patent RF no. 2518035. IPC В 23 К 35/368.  Byulleten’ izobretenii. 2014, no. 16. (In Russ.).

11. Volobuev  Yu.S.,  Volobuev  O.S.,  Parkhomenko  A.G.,  Dobrozhe-la  E.I.,  Klimenchuk  O.S.  Using  a  new  general-purpose  ceramic  flux SFM-101 in welding of beams. Welding International. 2012,  vol.  26, no. 8, pp. 649–653. 

12. Golovko  V.V.,  Potapov  N.N.  Special  features  of  agglomerated  (ceramic) fluxes in welding. Welding International. 2011, vol. 25,  no.  11, pp. 889–893. 

13. Pavlov  I.V.,  Oleinichenko  K.A.  Regulating  generation  of  CO  by  varying the composition of ceramic fluxes. Welding International.  1995, vol. 9, no. 4, pp. 329–332. 

14. Volobuev Yu.S., Surkov A.V., Volobuev O.S. etc. The development  and properties of a new ceramic flux used for reconditioning rolling stock components. Welding International. 2010, vol. 24, no. 4,  pp.  298–300. 

15. Bublik O.V., Chamov S.V. Advantages and shortcomings of ceramic (agglomerated) fluxes in comparison with fused fluxes used for the same applications. Welding International. 2010, vol. 24, no. 9,  pp.  730–733. 

16. Gur’ev  S.V.,  Pletnev  Yu.M.,  Murav’ev  I.I.  Investigation  of  the  properties  of  welded  joints  produced  by  welding  in  a  gas  mixture and under a flux. Welding International. 2012, vol. 26, no. 8,  pp.  646–648. 

17. Parshin  S.G.  Using  ultrafine  particles  of  activating  fluxes  for  increasing the productivity of MIG/MAG welding of steels. Welding International. 2012, vol. 26, no. 10, pp. 800–804. 

18. Barmin L.N. et al. Effect of the composition of flux and welding  wire on the properties of deposited metal of 05N4MYu type. Welding International. 1989, vol. 3, no. 2, pp. 109–111. 

19. Kazakov Yu.V., Koryagin K.B., Potekhin V.P. Effect of activating  fluxes on penetration in welding steels thicker than 8 mm. Welding International. 1991, vol. 5, no. 3, pp. 202–205. 

20. Potapov N.N., Feklistov S.I., Volobuev Yu.S., Potekhin V.P. A method  of  selecting  fused  fluxes  in  welding  pearlitic-ferritic  steels.  Welding International. 2009, vol. 23, no. 10, pp. 800–803. 

21. Crespo A.C., Puchol R.Q., González L.P. etc. Study of the relationship between the composition of a fused flux and its structure and  properties. Welding International. 2009, vol. 23, no. 2, pp. 120–131. 

22. Golyakevich A.A., Orlov L.N., Malinov L.S., Titarenko V.I. Experience in application of electric arc surfacing with flux-cored wire at  the enterprises of Ukraine. The Paton Welding Journal. 2016, no.  9,  pp. 33–37.

23. Cruz-Crespo A.,  Quintana-Puchol  R.,  Perdomo  González  L.  etc.  Carbothermic reduction of pirolusite to obtain carbon-bearing ferro-manganese and slag suited to the development of welding materials.  Welding International. 2005, vol. 19, no. 7, pp. 544–551. 

24. Kozyrev N.A., Kryukov R.E., Kozyreva O.E., Lipatova U.I., Filonov A.V. Production of Welding Fluxes Using Waste Slag Formed in  Silicomanganese Smelting. IOP Conference Series: Materials Science and Engineering. 2016, vol. 125, pp. 1–6.

25. Kozyrev  N.A.,  Kryukov  R.E.,  Lipatova  U.I.,  Kozyreva  O.E.  On  the use of slag from silicomanganese production for welding flux  manufacturing. IOP Conf. Series: Materials Science and Engineering. 2016, vol. 150, pp. 65–73.


Review

For citations:


Kozyrev N.A., Kryukov R.E., Umanskii A.A., Mikhno A.R., Dumova L.V. INVESTIGATION AND DEVELOPMENT OF WELDING FLUXES WITH THE USE OF LADLE ELECTRIC-FURNACE SLAG AND BARIUM-STRONTIUM MODIFIER FOR ROLLS SURFACING. Izvestiya. Ferrous Metallurgy. 2018;61(4):274-279. (In Russ.) https://doi.org/10.17073/0368-0797-2018-4-274-279

Views: 594


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)