SYNTHESIS OF FINELY DISPERSED VANADIUM CARBIDE (VC0.88) USING NANOFIBROUS CARBON
https://doi.org/10.17073/0368-0797-2018-4-260-267
Abstract
The paper presents the experimental data on the synthesis of finely dispersed powder of vanadium carbide (VC0.88 ). Vanadium carbide was prepared by the reduction of vanadium oxide (III) with nanofibrous carbon (NFC) in the induction furnace under an argon atmosphere. NFC is a product of catalytic decomposition of light hydrocarbons. The main characteristic of a NFC is a high specific surface area (~150 000 m2 /kg), which is significantly higher than that of soot (~50 000 m2 /kg). The content of impurities in the NFC is at the level of 1 % wt. Based on the analysis of the state diagram of the V – C system, the composition of the charge and the upper temperature limit of the carbide formation reaction for obtaining vanadium carbide in the powder state are determined. Based on the thermodynamic analysis, the temperature of the onset of the carbothermic reduction reaction of vanadium oxide (III) at various CO pressures was determined. The characteristics of vanadium carbide were studied using X-ray and elemental analyzes, pycnometric analysis, scanning electron microscopy using local energy dispersive X-ray microanalysis (EDX), low-temperature adsorption of nitrogen, followed by determination of the BET specific surface area, sedimentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase – vanadium carbide VC0.88 . The powder particles were predominantly aggregated. The average size of the particles and the aggregates equaled 9.2 – 9.4 μm within a wide range of size distribution. The specific surface value of the obtained samples was 1800 – 2400 m2 /g. Oxidation of vanadium carbide began from the temperature of ~430 °C and practically ends at ~830 °C. Optimum parameters of synthesis are the ratio of reagents according to stoichiometry to obtain carbide of composition VC0.88 at a temperature of 1500 – 1600 °С and a holding time of 20 minutes. It is shown that for this process nanofibrous carbon is an effective reducing agent and that vanadium oxide (III) is almost completely reduced to carbide VC0.88
Keywords
About the Authors
Yu. L. KrutskiiRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Chemistry and Chemical Technology”
A. G. Tyurin
Russian Federation
Cand. Sci. (Eng), Assist. Professor of the Chair “Material Science and Mechanical Engineering”
M. V. Popov
Russian Federation
Senior Lecturer of the Chair “Chemistry and Chemical Technology”
E. A. Maksimovskii
Russian Federation
Cand. Sci (Chem.), Senior Researcher of the Laboratory of Epitaxial Layers
O. V. Netskina
Russian Federation
Cand. Sci (Chem.), Senior Researcher of the Laboratory of Hydride Investigation
References
1. Svoistva, poluchenie i primenenie tugoplavkikh soedinenii: spravochnik [Properties, production and application of refractory compounds: Reference book]. Kosolapova T.Ya. ed. Moscow: Metallurgiya, 1986, 928 p. (in Russ.).
2. Wu X.Y., Li G.Z., Chen Y.H., Li G.Y. Microstructure and mechanical properties of vanadium carbide coatings synthesized by reactive magnetron sputtering. International Journal of Refractory Metals and Hard Materials, 2009, vol. 27, pp. 611–614.
3. Fan X.S., Yang Z.G., Xia Z.H., Zhang C., Che H.Q. The micro-structure evolution of VC coatings on AISI H13 and 9Cr18 steel by thermo-reactive deposition process. Journal of Alloys and Compounds. 2010, vol. 505, pp. 15–18.
4. Qianlin W., Wenge L., Ning Z.,Gang W., Haishan W. Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate. Materials & Design. 2013, vol. 49, pp. 10–18.
5. Hyoung R.L. Role of vanadium carbide additive during sintering of WC-Co: mechanism of grain growth inhibition. Journal of the American Ceramic Society. 2003, vol. 86, no. 1, pp. 152–154.
6. Bonny K., De Baets P., Vleugels J., Huang S., Van der Biest O., Lauvers B. Impact of Cr3C2/VC addition on the dry sliding friction and wear response of WC-Co cemented carbides. Wear. 2009, vol. 267, pp. 1642–1652.
7. Espinoza-Fernández L., Borrell A., Salvador M.D., Gutierrez-Gonzalez C.F. Sliding wear behavior of WC-Co-Cr3C2-VC composites
8. fabricated by conventional and non-conventional techniques. Wear. 2013, vol. 307, pp. 60–67.
9. Kurlov A.S., Gusev A.I. Fizika i khimiya karbidov vol’frama [Physics and chemistry of tungsten carbides]. Moscow: FIZMATLIT, 2013, 272 p. (in Russ.).
10. Meunier F., Delporte P., Heinrich B., Bouchy C., Crouzet C., Pham-Huu C. Panissod P., Lerou J.J., Mills P.L., Ledoux M.J. Synthesis and characterization of high specific surface area vanadium carbide; application to catalytic oxidation. Journal of Catalysis. 1997, vol. 169, pp. 33–44.
11. Choi J-G. Ammonia decomposition over vanadium carbide catalysts. Journal of Catalysis. 1999, vol. 182, pp. 104–116.
12. Rodríguez P., Brito G.L., Albornoz A., Labadí M., Pfaff C., Marrero S., Moronta D., Betancourt P. Comparison of vanadium carbide and nitride catalysts for hydrotreating. Catalysis Communications. 2004, vol. 5, pp. 79–82.
13. Liu Z.G., Tsuchiya K, Umemoto M. Mechanical milling of fullerene with carbide forming elements. Journal of Materials Science. 2002, vol. 37, pp. 1229–1235.
14. Zhang B., Li Z.Q. Synthesis of vanadium carbide by mechanical alloying. Journal of Alloys and Compounds. 2005, vol. 392, pp. 183–186.
15. Ma J., Wu M., Du Y., Chen S., Ye J., Jin L. Low temperature synthesis of vanadium carbide (VC). Materials Letters. 2009, vol. 63, pp. 905–907.
16. Chen Y., Zhang H., Ye H., Ma J. A simple and novel route to synthe-size nano-vanadium carbide using magnesium powders, vanadium pentoxide and different carbon source. International Journal of Refractory Metals & Hard Materials. 2011, vol. 29, pp. 528–531.
17. Wang L., Li Q., Mei T., Shi L., Zhu Y., Qian Y. A thermal reduction route to nanocrystalline transition metal carbides from waste polytetrafluoroethylene and metal oxides. Materials Chemistry and Physics. 2012, vol. 137, pp. 1–4.
18. Shumilova R.G., Kosolapova T.Ya. Semi-industrial production of vanadium carbide. Poroshkovaya metallurgiya. 1968, no. 11, pp. 83–88. (In Russ.).
19. Kapoor R., Oyama S.T. Synthesis of vanadium carbide by temperature programmed reaction. Journal of Solid State Chemistry. 1995, vol. 120, pp. 320–326.
20. Saburov V.P., Cherepanov A.N., Zhukov M.F., Galevskii G.V., Krushenko G.G., Borisov V.T. Plasma-chemical synthesis of ultra-dispersed powders and their application for the modification of metals and alloys. In: Nizkotemperaturnaya plazma [Low-temperature plasma]. Vol. 12. Novosibirsk: Nauka, Sibirskaya izdatel'skaya firma RAN, 1995, 344 p. (In Russ.).
21. Preiss H., Schultze D., Szulzewsky K. Carbothermal synthesis of vanadium and chromium carbides from solution-derived precursors. Journal of the European Ceramic Society. 1995, vol. 19, pp. 187–194.
22. Lei M., Zhao H.Z., Yang H., Song B., Cao L.Z., Li P.G., Tang W.H. Syntheses of metal nitrides, metal carbides and rare-earth metal dioxymonocarbodiimides from metal oxides and dicyandiamide. Journal of Alloys and Compounds. 2008, vol. 460, pp. 130–137.
23. Lei M., Zhao H.Z., Yang H., Song B., Tang W.H. Synthesis of transition metal carbide nanoparticles through melamine and metal oxides. Journal of the European Ceramic Society. 2008, vol. 28, pp. 1671–1677.
24. Li P.G., Lei M., Tang W.H. Route to transition metal carbide nanoparticles through cyanamide and metal oxides. Materials Research Bulletin. 2008, vol. 43, pp. 3621–3626.
25. Eick B.M., Youngblood J.P. Carbothermal reduction of metal-oxide powders by synthetic pitch to carbide and nitride ceramics. Journal of Materials Science. 2009, vol. 44, pp. 1159–1171.
26. Liu F., Yao Y., Zhang H., Kang Y., Jin G., Huang Z., Liao X., Liang X. Synthesis and characterization of vanadium carbide nanoparticles by thermal refluxing- derived precursors. Journal of Materials Science. 2011, vol. 46, pp. 3693–3697.
27. Dai L.Y., Lin S.F., Chen J.F., Zeng M.Q., Zhu M. A new method of synthesizing ultrafine vanadium carbide by dielectric barrier discharge plasma assisted milling. International Journal of Refractory Metals & Hard Materials. 2012, vol. 30, pp. 48–50.
28. Zhao Z., Liu Y., Cao H., Gao S., Tu M. Phase evolution during synthesis of vanadium carbide (V8C7 ) nanopowders by thermal processing of the precursor. Vacuum. 2008, vol. 82, pp. 852–855.
29. Lin H., Tao B.W., Li Q., Li Y.R. In situ synthesis of (V8C7 ) nanopowders from a new precursor. International Journal of Refractory Metals & Hard Materials. 2012, vol. 31, pp. 138–140.
30. Vodop’yanov A.G., Kozhevnikov G.N., Baranov S.V Interaction of refractory metal oxides with carbon. Russian Chemical Reviews. 1988, vol. 57, no. 9, pp. 810–823.
31. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G., Yermakov D. Yu., Yermakova M.A., Salanov A.N., Rudina N.A. Mechanism of porous filamentous carbon granule formation on сatalytic hydrocarbon decomposition. Carbon. 1999, vol. 37, pp. 1239–1246.
32. Krutskii Yu.L., Bannov A.G, Antonova E.V, Shinkarev V.V, Maksimovskii E.A, Ukhina A.V, Solov’ev E.A, Krutskaya T.M, Razumakov A.A., Golovin D.D, Netskina O.V. Synthesis of a highly dispersed titanium carbide powder using nanofibrous carbon. Perspektivnye materialy. 2014, no. 2, pp. 60–65. (In Russ.).
33. Krutskii Yu.L., Dyukova K.D., Bannov A.G., Ukhina A.V., Sokolov V.V., Pichugin A.Yu., Krutskaya T.M., Netskina O.V., Samoilenko V.A Synthesis of high-dispersed powder of higher chromium carbide with the use of nanofibrous carbon. Izv. vuz. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2014, no. 3, pp. 3–8. (In Russ.).
34. Krutskii Yu.L., Dyukova K.D., Bannov A.G., Maksimovskii E.A., Ukhina A.V., Krutskaya T.M., Netskina O.V., Kuznetsova V.V. Synthesis of highly disperse zirconium carbide powder using nanofibrous carbon. Nauchnyi Vestnik NGTU. 2015, vol. 60, no. 3, pp. 192–205. (In Russ.).
35. Fiziko-khimicheskie svoistva okislov: spravochnik [Physics and chemical properties of oxides: Reference book]. Samsonov G.V. ed. Moscow: Metallurgiya, 1978, 472 p. (In Russ.).
36. Svoistva elementov. Chast’ 1. Fizicheskie svoistva: spravochnik [Properties of elements. Part 1. Physical properties: Reference book]. Samsonov G.V. ed. Moscow: Metallurgiya, 1976, 600 p. (In Russ.).
37. West A.R. Solid State Chemistry and Its Applications. Part I. Chi-chester: John Wiley, 1984, 734 p.
38. Samsonov G.V., Vinitskii I.M. Tugoplavkie soedineniya: spravochnik[Refractory compounds: Reference book]. Moscow: Metallurgiya, 1976, 560 p. (In Russ.).
39. Blott S.J., Pye K. Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms. 2001, vol. 26, pp. 1237–1248.
40. Voitovich R.F. Okislenie karbidov i nitridov [Oxidation of carbides and nitrides]. Kiev: Naukova Dumka, 1981, 192 p. (In Russ.).
41. Krutskii Yu.L., Galevskii G.V., Kornilov A.A. Oxidation of ultra-dispersed powders of boron, vanadium and chromium carbides. Porosh kovaya metallurgiya. 1983, no. 2, pp. 47–50. (In Russ.).
Review
For citations:
Krutskii Yu.L., Tyurin A.G., Popov M.V., Maksimovskii E.A., Netskina O.V. SYNTHESIS OF FINELY DISPERSED VANADIUM CARBIDE (VC0.88) USING NANOFIBROUS CARBON. Izvestiya. Ferrous Metallurgy. 2018;61(4):260-267. (In Russ.) https://doi.org/10.17073/0368-0797-2018-4-260-267