Preview

Izvestiya. Ferrous Metallurgy

Advanced search

SYNTHESIS OF FINELY DISPERSED VANADIUM CARBIDE (VC0.88) USING NANOFIBROUS CARBON

https://doi.org/10.17073/0368-0797-2018-4-260-267

Abstract

The paper presents the experimental data on the synthesis of finely dispersed powder of vanadium carbide (VC0.88 ). Vanadium carbide was prepared by the reduction of vanadium oxide  (III) with nanofibrous carbon (NFC) in the induction furnace under an argon atmosphere. NFC is a product of catalytic decomposition of light hydrocarbons. The main characteristic of a NFC is a high specific surface area (~150  000  m2 /kg), which is significantly higher than that of soot (~50  000  m2 /kg). The content of impurities in the NFC is at the level of 1  %  wt. Based on the analysis of the state diagram of the V – C system, the composition of the charge and the upper temperature limit of the carbide formation reaction for obtaining vanadium carbide in the powder state are determined. Based on the thermodynamic analysis, the temperature of the onset of the carbothermic reduction reaction of vanadium oxide (III) at various CO pressures was determined. The characteristics of vanadium carbide were studied using X-ray and elemental analyzes, pycnometric analysis, scanning electron microscopy using local energy dispersive X-ray microanalysis (EDX), low-temperature adsorption of nitrogen, followed by determination of the BET specific surface area, sedimentation analysis, synchronous thermogravimetry and differential scanning calorimetry (TG/DSC). The material obtained at optimal parameters is represented by a single phase  – vanadium carbide VC0.88 . The powder particles were predominantly aggregated. The average size of the particles and the aggregates equaled 9.2  –  9.4  μm within a wide range of size distribution. The specific surface value of the obtained samples was 1800  –  2400  m2 /g. Oxidation of vanadium carbide began from the temperature of ~430  °C and practically ends at ~830  °C. Optimum parameters of synthesis are the ratio of reagents according to stoichiometry to obtain carbide of composition VC0.88 at a temperature of 1500  –  1600  °С and a holding time of 20  minutes. It is shown that for this process nanofibrous carbon is an effective reducing agent and that vanadium oxide  (III) is almost completely reduced to carbide VC0.88

About the Authors

Yu. L. Krutskii
Novosibirsk State Technical University, Novosibirsk
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Chemistry and Chemical Technology”


A. G. Tyurin
Novosibirsk State Technical University, Novosibirsk
Russian Federation
Cand. Sci. (Eng), Assist. Professor of the Chair “Material Science and Mechanical Engineering”


M. V. Popov
Novosibirsk State Technical University, Novosibirsk
Russian Federation
Senior Lecturer of the Chair “Chemistry and Chemical Technology”


E. A. Maksimovskii
Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk
Russian Federation
Cand. Sci (Chem.), Senior Researcher of the Laboratory of Epitaxial Layers


O. V. Netskina
Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation
Cand. Sci (Chem.), Senior Researcher of the Laboratory of Hydride Investigation


References

1. Svoistva, poluchenie i primenenie tugoplavkikh soedinenii: spravochnik [Properties, production and application of refractory compounds: Reference book]. Kosolapova T.Ya. ed. Moscow: Metallurgiya, 1986, 928 p. (in Russ.). 

2. Wu X.Y., Li G.Z., Chen Y.H., Li G.Y. Microstructure and mechanical properties of vanadium carbide coatings synthesized by reactive  magnetron  sputtering.  International Journal of Refractory Metals and Hard Materials, 2009, vol. 27, pp. 611–614.

3. Fan  X.S., Yang  Z.G.,  Xia  Z.H.,  Zhang  C.,  Che  H.Q. The  micro-structure  evolution  of VC  coatings  on AISI  H13  and  9Cr18  steel  by thermo-reactive deposition process. Journal of Alloys and Compounds. 2010, vol. 505, pp. 15–18. 

4. Qianlin W., Wenge L., Ning Z.,Gang W., Haishan W. Microstructure  and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate. Materials & Design. 2013, vol. 49, pp. 10–18.

5. Hyoung R.L. Role of vanadium carbide additive during sintering  of WC-Co: mechanism of grain growth inhibition. Journal of the American Ceramic Society. 2003, vol. 86, no. 1, pp. 152–154.

6. Bonny K., De Baets P., Vleugels J., Huang S., Van der Biest O.,  Lauvers  B.  Impact  of  Cr3C2/VC  addition  on  the  dry  sliding  friction and wear response of WC-Co cemented carbides. Wear. 2009, vol.  267, pp. 1642–1652.

7. Espinoza-Fernández L., Borrell A., Salvador M.D., Gutierrez-Gonzalez C.F. Sliding wear behavior of WC-Co-Cr3C2-VC composites 

8. fabricated by conventional and non-conventional techniques. Wear.  2013, vol. 307, pp. 60–67.

9. Kurlov A.S., Gusev A.I. Fizika i khimiya karbidov vol’frama [Physics  and  chemistry  of  tungsten  carbides].  Moscow:  FIZMATLIT,  2013, 272 p. (in Russ.).

10. Meunier F., Delporte P., Heinrich B., Bouchy C., Crouzet C., Pham-Huu C. Panissod P., Lerou J.J., Mills P.L., Ledoux M.J. Synthesis  and  characterization  of  high  specific  surface  area  vanadium  carbide; application to catalytic oxidation. Journal of Catalysis. 1997,  vol.  169, pp. 33–44. 

11. Choi  J-G. Ammonia  decomposition  over  vanadium  carbide  catalysts. Journal of Catalysis. 1999, vol. 182, pp. 104–116.

12. Rodríguez P., Brito G.L., Albornoz A., Labadí M., Pfaff C., Marrero  S., Moronta D., Betancourt P. Comparison of vanadium carbide  and nitride catalysts for hydrotreating. Catalysis Communications.  2004, vol. 5, pp. 79–82.

13. Liu Z.G., Tsuchiya K, Umemoto M. Mechanical milling of fullerene  with carbide forming elements. Journal of Materials Science. 2002,  vol. 37, pp. 1229–1235.

14. Zhang  B.,  Li  Z.Q.  Synthesis  of  vanadium  carbide  by  mechanical  alloying.  Journal of Alloys and Compounds.  2005,  vol.  392,   pp.  183–186.

15. Ma J., Wu M., Du Y., Chen S., Ye J., Jin L. Low temperature synthesis of vanadium carbide (VC). Materials Letters. 2009, vol. 63,  pp. 905–907.

16. Chen Y., Zhang H., Ye H., Ma J. A simple and novel route to synthe-size nano-vanadium carbide using magnesium powders, vanadium  pentoxide and different carbon source. International Journal of Refractory Metals & Hard Materials. 2011, vol. 29, pp. 528–531.

17. Wang L., Li Q., Mei T., Shi L., Zhu Y., Qian Y. A thermal reduction route to nanocrystalline transition metal carbides from waste  polytetrafluoroethylene and metal oxides. Materials Chemistry and Physics. 2012, vol. 137, pp. 1–4.

18. Shumilova  R.G.,  Kosolapova  T.Ya.  Semi-industrial  production  of  vanadium  carbide.  Poroshkovaya metallurgiya.  1968,  no.  11,  pp.  83–88. (In Russ.).

19. Kapoor R., Oyama S.T. Synthesis of vanadium carbide by temperature programmed reaction. Journal of Solid State Chemistry. 1995,  vol. 120, pp. 320–326. 

20. Saburov  V.P.,  Cherepanov  A.N.,  Zhukov  M.F.,  Galevskii  G.V.,  Krushenko G.G., Borisov V.T. Plasma-chemical synthesis of ultra-dispersed powders and their application for the modification of metals and alloys. In: Nizkotemperaturnaya plazma [Low-temperature  plasma].  Vol.  12.  Novosibirsk:  Nauka,  Sibirskaya  izdatel'skaya  firma RAN, 1995, 344 p. (In Russ.).

21. Preiss  H.,  Schultze  D.,  Szulzewsky  K.  Carbothermal  synthesis  of  vanadium  and  chromium  carbides  from  solution-derived  precursors. Journal of the European Ceramic Society. 1995, vol. 19,   pp.  187–194.

22. Lei M., Zhao H.Z., Yang H., Song B., Cao L.Z., Li P.G., Tang W.H.  Syntheses  of  metal  nitrides,  metal  carbides  and  rare-earth  metal  dioxymonocarbodiimides  from  metal  oxides  and  dicyandiamide.  Journal of Alloys and Compounds. 2008, vol. 460, pp. 130–137.

23. Lei  M.,  Zhao  H.Z.,  Yang  H.,  Song  B.,  Tang  W.H.  Synthesis  of  transition metal carbide nanoparticles through melamine and metal  oxides.  Journal of the European Ceramic Society.  2008,  vol.  28,  pp.  1671–1677.

24. Li  P.G.,  Lei  M.,  Tang  W.H.  Route  to  transition  metal  carbide  nanoparticles through cyanamide and metal oxides. Materials Research Bulletin. 2008, vol. 43, pp. 3621–3626.

25. Eick B.M., Youngblood J.P. Carbothermal reduction of metal-oxide  powders by synthetic pitch to carbide and nitride ceramics. Journal of Materials Science. 2009, vol. 44, pp. 1159–1171.

26. Liu F., Yao Y., Zhang H., Kang Y., Jin G., Huang Z., Liao X., Liang  X. Synthesis and characterization of vanadium carbide nanoparticles by thermal refluxing- derived precursors. Journal of Materials Science. 2011, vol. 46, pp. 3693–3697.

27. Dai L.Y., Lin S.F., Chen J.F., Zeng M.Q., Zhu M. A new method  of synthesizing ultrafine vanadium carbide by dielectric barrier discharge plasma assisted milling. International Journal of Refractory Metals & Hard Materials. 2012, vol. 30, pp. 48–50.

28. Zhao  Z.,  Liu Y.,  Cao  H.,  Gao  S.,  Tu  M.  Phase  evolution  during  synthesis of vanadium carbide (V8C7 ) nanopowders by thermal processing of the precursor. Vacuum. 2008, vol. 82, pp. 852–855.

29. Lin H., Tao B.W., Li Q., Li Y.R. In situ synthesis of (V8C7 ) nanopowders from a new precursor. International Journal of Refractory Metals & Hard Materials. 2012, vol. 31, pp. 138–140. 

30. Vodop’yanov A.G.,  Kozhevnikov  G.N.,  Baranov  S.V  Interaction  of refractory metal oxides with carbon. Russian Chemical Reviews. 1988, vol. 57, no. 9, pp. 810–823.

31. Kuvshinov  G.G.,  Mogilnykh  Yu.L.,  Kuvshinov  D.G.,  Yermakov  D. Yu.,  Yermakova  M.A.,  Salanov  A.N.,  Rudina  N.A. Mechanism of porous filamentous carbon granule formation on  сatalytic  hydrocarbon  decomposition.  Carbon.  1999,  vol.  37,   pp.  1239–1246. 

32. Krutskii Yu.L., Bannov A.G, Antonova E.V, Shinkarev V.V, Maksimovskii  E.A,  Ukhina A.V,  Solov’ev  E.A,  Krutskaya  T.M,  Razumakov A.A.,  Golovin  D.D,  Netskina  O.V.  Synthesis  of  a  highly  dispersed titanium carbide powder using nanofibrous carbon. Perspektivnye materialy. 2014, no. 2, pp. 60–65. (In Russ.).

33. Krutskii Yu.L., Dyukova K.D., Bannov A.G., Ukhina A.V., Sokolov  V.V., Pichugin A.Yu., Krutskaya T.M., Netskina O.V., Samoilenko  V.A  Synthesis  of  high-dispersed  powder  of  higher  chromium  carbide with the use of nanofibrous carbon. Izv. vuz. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 2014, no. 3, pp. 3–8. (In  Russ.).

34. Krutskii Yu.L., Dyukova K.D., Bannov A.G., Maksimovskii E.A.,  Ukhina  A.V.,  Krutskaya  T.M.,  Netskina  O.V.,  Kuznetsova  V.V.  Synthesis  of  highly  disperse  zirconium  carbide  powder  using  nanofibrous carbon. Nauchnyi Vestnik NGTU. 2015, vol. 60, no. 3,  pp.  192–205. (In Russ.).

35. Fiziko-khimicheskie svoistva okislov: spravochnik  [Physics  and  chemical properties of oxides: Reference book]. Samsonov G.V. ed.  Moscow: Metallurgiya, 1978, 472 p. (In Russ.). 

36. Svoistva elementov. Chast’ 1. Fizicheskie svoistva: spravochnik [Properties of elements. Part 1. Physical properties: Reference book].  Samsonov G.V. ed. Moscow: Metallurgiya, 1976, 600 p. (In Russ.).

37. West A.R. Solid State Chemistry and Its Applications. Part I. Chi-chester: John Wiley, 1984, 734 p.

38. Samsonov G.V., Vinitskii I.M. Tugoplavkie soedineniya: spravochnik[Refractory compounds: Reference book]. Moscow: Metallurgiya, 1976, 560 p. (In Russ.).

39. Blott S.J., Pye K. Gradistat: a grain size distribution and statistics  package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms. 2001, vol. 26, pp. 1237–1248.

40. Voitovich R.F. Okislenie karbidov i nitridov [Oxidation of carbides  and nitrides]. Kiev: Naukova Dumka, 1981, 192 p. (In Russ.). 

41. Krutskii Yu.L., Galevskii G.V., Kornilov A.A. Oxidation of ultra-dispersed  powders  of  boron,  vanadium  and  chromium  carbides.  Porosh kovaya metallurgiya. 1983, no. 2, pp. 47–50. (In Russ.).


Review

For citations:


Krutskii Yu.L., Tyurin A.G., Popov M.V., Maksimovskii E.A., Netskina O.V. SYNTHESIS OF FINELY DISPERSED VANADIUM CARBIDE (VC0.88) USING NANOFIBROUS CARBON. Izvestiya. Ferrous Metallurgy. 2018;61(4):260-267. (In Russ.) https://doi.org/10.17073/0368-0797-2018-4-260-267

Views: 875


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)