INFLUENCE OF DIFFERENT STATE PARAMETERS ON THE BEHAVIOR OF FATIGUE CURVES
https://doi.org/10.17073/0368-0797-2018-3-244-250
Abstract
The behavior of materials in different areas of cyclic loading is very different and can depend on both their state and the test conditions. As the criteria for damage during cyclic loading, width of the hysteresis loop, parameters of the dislocation theory, magnitude of the stresses and their intensity, relation with the grain size, etc. can serve. Meanwhile, there is still no general complex mathematical equation reflecting the effect on metal damage during fatigue of such important characteristics of polycrystals as the density or defectiveness, the stress relaxation rate, loading rate, structural and energy state of the material, namely, strength and hardness, and the applied emerging stress-strain state. In the present work, the influence of cyclic loading on failure from the point of view of competition of the loading and relaxation rates of internal stresses with allowance for the spectrum of plastic deformation waves is considered. Depending on the type and loading conditions, a different spectrum of the waves of plastic deformation and fracture is formed under different kinds and loading conditions. It is shown that as the frequency of cyclic loading (strain rate) increases, the voltage rise time decreases, and the voltage corresponding to a certain plastic deformation increases. The intensity of reducing the resistance to material destruction is related to the intensity of damage accumulation. General analytical equations for describing the behavior of the fatigue curves of polycrystalline metals and alloys are obtained, which allow one to represent the influence of the factors of their state in dependence on the influence of the external conditions of cyclic loading. The equation allows to simulate various situations of behavior of polycrystals with fatigue in metals, as well as to analyze the fatigue curves of materials in different states. Since the relaxation rate in polycrystals is the vectorial value = pl.d + p , representing the sum of the vectors of the plastic deformation rate ( pl.d ) and the actual fracture rate p is the nucleation and growth of cracks, then taking this into account, with increasing pl.d with constant total relaxation rate, the rate of destruction will decrease, the fatigue curve will go lower (position). Fatigue curves are constructed for various parameters of the structuralenergy state (Brinell hardness) and density-dependent coefficients.
About the Authors
V. V. Myl’nikovRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Building Technology”
V. A. Skudnov
Russian Federation
Sci. (Eng.), Professor, Head of the Chair “Physical Metallurgy, Heat and Plastic Treatment of Metals”
References
1. McEvily A.J. Metal Failures: Mechanisms, Analysis, Prevention. New York: Wiley, 2002, 324 p. (Russ.ed.: McEvily A.J. Analiz avariinykh razrushenii. Moscow: Tekhnosfera, 2010, 416 p.).
2. Gottstein G. Physical Foundations of Materials Science. Berlin, Heidelberg: Springer-Verlag, 2004. (Russ.ed.: Gottstein G. Fizikokhimicheskie osnovy materialovedeniya. Moscow: Laboratoriya znanii, 2009, 400 p.).
3. Shanyavskii A.A., Banov M.D., Beklemishev N.N. Diagnostika ustalosti aviatsionnykh konstruktsii akusticheskoi emissiei [Diagnostics of fatigue of aircraft structures by acoustic emission]. Moscow: MAI, 2017, 188 p. (In Russ.).
4. Kocanda S. Zmeczeniowe niszczenie metali. Warszawa: Wydawnictwa Naukowo-Techniczne, 1972. (Russ.ed.: Kocanda S. Ustalostnoe rastreskivanie metallov. Moscow: Metallurgiya, 1990, 432 p.) (In Polish).
5. Shanyavskiy A. Scales of metal fatigue failures and mechanisms for origin of subsurface fracture formation. Solid State Phenomena. 2017, vol. 258 SSP, pp. 249–254.
6. Honeycombe R.W.K. The plastic deformation of metals. Edward Arnold Ltd., 2nd. ed., 1984, 483 p. (Russ.ed.: Honeycombe R. Plasticheskaya deformatsiya metallov. Moscow: Mir, 1972, 408 p.).
7. Terent’ev V.F., Korableva S.A. Ustalost’ metallov [Fatigue of metals]. Moscow: Nauka, 2015, 479 p. (In Russ.).
8. McLean D. Mechanical Properties of Metals. London: John Wiley & Sons, 1962, 403 p. (Russ.ed.: McLean D. Mekhanicheskie svoistva metallov. Moscow: Metallurgiya, 1965, 431 p.).
9. Terent’ev V.F. Cyclic strength submicro – and nanocrystalline metals and alloys (review). Novі materіali і tekhnologії v metalurgії ta mashinobuduvannі. 2010, no. 1, pp. 8–24. (In Russ.).
10. Rebyakov Yu.N., Chernyavskii O.F. Deformation properties of materials under combined alternating current and forming. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika. 2012, no. 11 (270), pp. 47–51. (In Russ.).
11. Gadenin M.M. Influence of the shape of loading cycle on the resistance to cyclic deformation and fracture of structural materials. Vestnik nauchno-tekhnicheskogo razvitiya. 2010, no. 9 (37), pp. 15–19. (In Russ.).
12. Ivanova B.C., Terent’ev V.F. Priroda ustalosti metallov [Nature of metals fatigue]. Moscow: Metallurgiya, 1975, 456 p. (In Russ.).
13. Cottrell A.H. Dislocation and plastic flow in crystals. Oxford: Clarendon press, 1953. (Russ. ed.: Cottrell A.H. Dislokatsii i plasticheskoe techenie v kristallakh. Moscow: Metallurgizdat, 1958, 267 p.).
14. Orlov A.N. Dependence of dislocation density on grain size and degree of plastic deformation. Phys Met Metallogr. 1977, vol. 44, no. 5, pp. 56–60.
15. Manson S.S. Behavior of materials under conditions of thermal stress. NACA TN-2933. 1953.
16. Manson S.S., Muralidharam U. Fatigue life prediction in bending from axial fatigue information. Fatigue Fract. Eng. Mater. Struct. 1987, vol. 9, no. 5, pp. 357–372.
17. Coffin L.F. (Jr). A study of the effects of cyclic thermal stresses on a ductile metal. Transactions ASME. 1954, vol. 76, pp. 931–950.
18. Korotkikh Yu.G., Volkov I.A., Tarasov I.S., Borodoi A.N. Numerical study of processes of complex plastic deformation of structural steel along closed trajectories of disproportionate deformation under low-cycle loading. Problemy prochnosti i plastichnosti. 2009, no. 71, pp. 26–35. (In Russ.).
19. Hall E.O. Deformation and ageing of mild steel. Proc. Phys. B. 1951, vol. 64, no. 1, pp. 747–753.
20. Petch N.J. The cleavage strength of policrystals. J. Iron Steel Inst. 1953, vol. 174, pp. 25–28.
21. Rybin V.V. Bol’shie plasticheskie deformatsii i razrushenie [Large plastic deformations and destruction]. Moscow: Metallurgiya, 1986, 224 p. (In Russ.).
22. Susmel L. and Taylor D. A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime. Fatigue Fract. Eng. Mater. Struct. 2007, vol. 30, no. 7, pp. 567–581.
23. Mylnikov V.V. Accelerated method to forecast the parameters of metal materials fatigue resistance with consideration of repeated loading frequency. International Journal of Applied and Fundamental Research. 2013, no. 2. Available at URL: www.science-sd. com/455-24311.
24. Shkol’nik L.M. Metodika ustalostnykh ispytanii. Spravochnik [Methodology of fatigue tests. Reference book]. Moscow: Metallurgiya, 1978, 304 p. (In Russ.).
25. Weibull W. The phenomenon of rupture in solid. Proc. Royal Swed. Inst. Eng. Res. 1939, vol. 153, pp. 1–55.
26. Weibull W. A statistical theory of strength of materials. Ibid. 1939, vol. 151, pp. 5–45.
27. Skudnov V.A. Predel’nye plasticheskie deformatsii metallov [Limit plastic deformations of metals]. Moscow: Metallurgiya, 1989, 176 p. (In Russ.).
28. Skudnov V.A. Regularities in the behavior of fatigue curves. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 1995, no. 2, pp. 24–26. (In Russ.).
29. Panin V.E. Fizicheskaya mezomekhanika materialov. Tom 1 [Physical mesomechanics of materials. Vol. 1]. Psakh’e S.G. ed. Tomsk: TGU, 2015, 462 p. (In Russ.).
Review
For citations:
Myl’nikov V.V., Skudnov V.A. INFLUENCE OF DIFFERENT STATE PARAMETERS ON THE BEHAVIOR OF FATIGUE CURVES. Izvestiya. Ferrous Metallurgy. 2018;61(3):244-250. (In Russ.) https://doi.org/10.17073/0368-0797-2018-3-244-250