SURFACE PHENOMENA PECULIARITIES IN THE BOF STEELMAKING BATH
https://doi.org/10.17073/0368-0797-2018-3-217-222
Abstract
BOF steelmaking technology is largely determined with processes taking place in the LD-converter reaction zone, which consists of “primary” and “secondary” sub-zones. The “primary” zone is a crater formed as result of supersonic gas stream impact on metal melt sur- face, fulfilled with metal droplets of 0.1 – 2 mm in diameter. Surrounding in the “secondary” zone consists of the large amount of gas bubbles of 0.2 – 4 mm in diameter. The total surface area of droplets and bubbles is by four orders of magnitude larger as compared with the stable metal surface of magnitude larger as compared with the stable metal surface place. This suggests important role of interface phenomena at steel refining processes. The reaction zone structure and its temperature distribution were studied with “hot” modeling method, where molten cast iron was blown with oxygen in transparent quartz crucible. Each blow was accomplished with photo- and cinema filming through crucible wall. Besides temperature distribution obtained material also allowed study of metal bath hydrodinamics directly in blowing zone. The most unexpected result here was the motion trajectory of bubbles in the “secondary” zone. They moved normally to the crater surface, i.e. almost in a horizontal direction instead of vertical float as it was noticed at “cold” modeling with water. This very important phenomenon is caused by surface tension in homogeneity, due to which the bubbles are moved at higher temperatures direction. Surface tension forces in front of and behind gas bubble in liquid with temperature gradient are different. Because contact forces behind bubble are larger as compared that in front, it is pushed out in direction of surface tension decrease. Surface tension inhomogeneity is generated with temperature (up to 1200 °C) and oxygen concentration gradients in the “secondary” reaction zone. Iron-carbon surface tension changes with temperature rise inconsistently. Surface tension increases with temperature rise up to 1550 °C. At reaching 1550 – 1600 °C there is a bend, which after surface tension begin to decrease. This bend point is as higher as lower carbon concentration in alloy gas bubbles and heterogeneous phase’s motion in surface decrease direction starts from 1550 °C isotherm. So it is outward border of “secondary” reaction zone, which separates it from main metal bath. Inside it resulting surface tension forces push gas bubbles and slag particles into accelerating motion with mass of metal melt in horizontal direction to the crater. This phenomenon determines whole steelmaking bath hydrodynamics with oxygen redistribution between molten metal components and hence the steel refining process in general.
About the Authors
N. E. KhisamutdinovRussian Federation
Dr. Sci. (Eng.), Professor
O. V. Yavoiskaya
Russian Federation
Cand. Sci. (Chem.), Assist. Professor of the Chair of Metal Technology and Repair of Machines
A. V. Yavoiskii
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair of Metallurgy of Steel, New Production Technologies and Metal Protection
S. N. Khisamutdinov
Russian Federation
Cand. Sci. (Eng.)
References
1. Yavoiskii V.I., Dorofeev G.A., Povkh I.L. Teoriya produvki staleplavil’noi vanny [Theory of steelmaking bath blow]. Moscow: Metallurgiya, 1974, 496 p. (In Russ.).
2. Baptizmanskii V.I., Okhotskii V.B. Fiziko-khimicheskie osnovy kislorodno-konverternogo protsessa [Phisico-chemical foundations of steelmaking process]. Kiev-Donetsk: Vishcha shkola, 1981, 184 p. (In Russ.).
3. Khisamutdinov N.E., Yavoiskii A.V., Grebenyuk N.A. Thermocapillarity phenomena at metal melts blow. Izv. AN SSSR. Rasplavy. 1989, vol. 3, no. 2, pp. 3–8. (In Russ.).
4. Yavoiskaya O.V., Yavoiskii A.V., Khisamutdinov N.E., Khisamutdinov S.N. Temperature of BOF reaction zone. In: Trudy 11 Rossiiskoi konferentsii “Stroenie i svoistva metallicheskikh rasplavov”, t. 2 [Proceedings of 11-th Russian Conf. “Structure and properties of metal melts”. Vol. 2]. Ekaterinburg – Chelyabinsk: YurGU, 2004, pp. 248–250. (In Russ.).
5. Yavoiskii V.I., Yavoiskii A.V. Nauchnye osnovy sovremennykh protsessov proizvodstva stali [Scientific foundation of modern steelmaking processes]. Moscow: Metallurgiya, 1987, 184 p. (In Russ.).
6. Baptizmanskii V.I. Mekhanizm i kinetika protsessov v konverternoi vanne [Mechanism and kinetics of converter bath processes]. Moscow: Metallurgizdat, 1960, 283 p. (In Russ.).
7. Surin V.A., Nazarov N.N. Masso- i teploobmen, gidrodinamika metallicheskoi vanny [Mass- and heat exchange, hydrodynamics of metal bath]. Moscow: Metallurgiya, 1993, 352 p. (In Russ.).
8. Yavoiskaya O.V., Khisamutdinov N.E., Yavoiskii A.V., Khisamutdinov S.N. Thermocapillarity phenomen at BOF process. In: Trudy 13 Rossiiskoi konferentsii “Stroenie i svoistva metallicheskikh i shlakovykh rasplavov”. Vol. 2: Eksperimental’noe izuchenie zhidkikh i amorfnykh metallicheskikh system [Proceedings of 13-th Russian Conf. “Structure and properties of metal and slag melts”, Vol. 2 Experimental study of liquid and amorphous metal systems]. Ekaterinburg: UrO RAN, 2011, pp. 186-189. (In Russ.).
9. Adamson A.W. Physical Chemistry of Surfaces. New York: J. Wiley, 1982, 664 p. (Russ.ed.: Adamson A. Fizicheskaya khimiya poverkhnostei. Moscow: Mir, 1997, 352 p.).
10. Jaуcock M.J., Parfitt G.D. Chemictrу of interfaces. New York: Ellis Horwood Ltd., 1981, 279 p. (Russ.ed.: Jaуcock M.J., Parfitt G.D. Khimiya poverkhnostei razdela faz. Moscow: Mir, 1984, 269 p.).
11. Popel’ S.I. Surface phenomena at steelmaking processes. In: sb.: Fiziko-khimicheskie osnovy protsessov proizvodstva stali [Collected articles: Physical-chemical foundation of steelmaking processes]. Moscow: Nauka, 1979, pp. 71-79. (In Russ.).
12. Popel’ S.I. Poverkhnostnye yavleniya v rasplavakh [Surface phenomena in melts]. Moscow: Metallurgiya, 1994, 440 p. (In Russ.).
13. Elanskii G.N., Kudrin V.A. Stroenie i svoistva zhidkogo metalla – tekhnologiya plavki – kachestvo stali [Liquid metal structure and properties – melting technology – steel quality]. Moscow: Metallurgiya, 1984, 239 p. (In Russ.).
14. Nizhenko V.I., Floka L.I. Poverkhnostnoe natyazhenie zhidkikh metallov i splavov (odno- i dvukhkomponentnye sistemy). Spravochnik [Surface tension of metals and alloys (mono – and two component systems). Reference book]. Moscow: Metallurgiya, 1981, 208 p. (In Russ.). 15. March N.H. Liquid metals. New York: Pergamon, 1968, 133 p. (Russ.ed.: March N.H. Zhidkie metally. Moscow: Metallurgiya, 1972, 128 p.).
15. Ershov G.S., Bychkov Yu.B. Svoistva metallicheskikh rasplavov i ikh vzaimodeistvie v staleplavil’nykh protsessakh [Metal melts properties and their interaction at steelmaking processes]. Moscow: Metallurgiya, 1983, 216 p. (In Russ.).
16. Arsent’ev P.P., Koledov L.A. Metallicheskie rasplavy i ikh svoistva [Metal melts and their properties]. Moscow: Metallurgiya, 1976, 376 p. (In Russ.). 18. Frank-Kamenetskii D.A. Diffuziya i teploperedacha v khimicheskoi kinetike [Diffusion and heat transfer in chemical kinetics]. Moscow: Nauka, 1967, 492 p. (In Russ.).
17. Popel’ S.I.,Nikitin Yu.P., Barmin L.A. etc. Vzaimodeistvie rasplavlennogo metalla s gazom i shlakom [Metal melt interaction with gas and slag]. Sverdlovsk: UPI, 1975, 184 p. (In Russ.).
18. The Structure of Liquid Metals and Alloys. Wilson J.R. ed. London: The Institute of Metals Publ., 1966, 232 p. (Russ.ed.: Wilson J.R. Struktura zhidkikh metallov i splavov. Moscow: Metallurgiya, 1972, 247 p.)
19. Baum B.A., Khasin G.A., Tyagunov G.V. etc. Zhidkaya stal’ [Liquid steel]. Moscow: Metallurgiya, 1984, 208 p. (In Russ.).
Review
For citations:
Khisamutdinov N.E., Yavoiskaya O.V., Yavoiskii A.V., Khisamutdinov S.N. SURFACE PHENOMENA PECULIARITIES IN THE BOF STEELMAKING BATH. Izvestiya. Ferrous Metallurgy. 2018;61(3):217-222. (In Russ.) https://doi.org/10.17073/0368-0797-2018-3-217-222