TRANSFORMATION OF CARBIDЕ PHASE IN RAILS AT LONG-TERM OPERATION
https://doi.org/10.17073/0368-0797-2018-2-140-148
Abstract
Evolution of carbide phase in surface layers of volume (passed gross tonnage 500 and 100 million tons) and differentially hardened rails (passed tonnage – 691.8 million tons) to a depth of 10 mm along the central axis and along the rail head fillet was studied by means of transmission electron diffraction microscopy. The grains of lamellar perlite, ferrite-carbide mixture, structurally free ferrite are analyzed. The flow of two complementary mechanisms of transformation of carbide phase of steel in the surface layers during the rails operation was identified: mechanism of cutting cementite particles and their subsequent transfer into the ferrite grains or plates volume (in perlite structure); mechanism of cutting and following dissolution of cementite particles, transition of carbon atoms to dislocations (into the Cottrell clouds and the dislocation centers), transfer of carbon atoms within dislocations to the volume of grains (or plates) of ferrite, with the following repeated formation of nanoscale cementite particles. A fragmented dislocation substructure is formed instead of former plates. Fragments boundaries decorate places where cementite-α phase interphase boundaries used to be. The main reason for dissolution of cementite is that it is energetically more preferable for carbon atoms to be on dislocation centers and on subboundaries than in cementite lattice. Binding energy of carbon atom-dislocation is 0.6 eV, for carbon atom-subboundary bond it is 0.8 eV, while in cementite it is held by 0.4 eV. Formation of elastoplastic stress fields is detected, concentrators of which are intra and interphase boundaries between grains of ferrite and perlite, cementite and ferrite plates of perlite colonies, particles of globular cementite and ferrite. The main sources of curvaturetorsion of metal lattice of rails metal are intraand interphase boundaries of grain separation of ferrite and perlite, cementite and ferrite plates of perlite colonies, particles of globular cementite and ferrite. Approaching to the rolling surface, number of stress concentrators and amplitude of internal fields of longrange stress are increasing.
About the Authors
Yu. F. IvanovRussian Federation
Dr. Sci. (Phys.-math.), Professor, Chief Researcher.
Tomsk
A. A. Yur’ev
Russian Federation
Research Engineer of Department of Scientific Research.
Novokuznetsk
V. E. Gromov
Russian Federation
Dr. Sci. (Phys.-math.), Professor, Head of the Chair of Science named after V.M. Finkel.
Novokuznetsk
S. V. Konovalov
Russian Federation
Dr. Sci. (Eng.), Professor, Head of the Chair of Metals Technology and Aviation Materials.
Samara
O. A. Peregudov
Russian Federation
Cand. Sci. (Eng.), Rector’s Assistant for Youth Policy.
Omsk
References
1. Tushinskii L.I., Bataev A.A., Tikhomirova L.B. Struktura perlita i konstruktivnaya prochnost’ stali [Perlite structure and structural strength of steel]. Novosibirsk: Nauka, 199, 280 p. (In Russ.).
2. Veter V.V., Popova N.A., Ignatenko L.N., Kozlov E.V. Fragmentation and cracks in pearlitic steel of backup rolls of the rolling mill. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Me tallurgy. 1994, no. 10, pp. 44–48. (In Russ.).
3. Gridnev V.N., Meshkov Yu.Ya., Oshkaderov S.P., Trefilov V.I. Fizicheskie osnovy elektrotermicheskogo uprochneniya stali [Physical basis of electrothermal hardening of steel]. Kiev: Naukova dumka, 1973, 335 p. (In Russ.).
4. Gridnev V.N., Gavrilyuk V.G., Meshkov Yu.Ya. Prochnost’ i plastichnost’ kholodnodeformirovannoi stali [Strength and ductility of cold processed steel]. Kiev: Naukova dumka, 1974, 231 p. (In Russ.).
5. Gavriljuk V.G. Raspredelenie ugleroda v stali [Carbon distribution in steel]. Kiev: Naukova dumka, 1987, 208 p. (In Russ.).
6. Ivanisenko Yu., Fecht H.J. Microstructure modification in the surface layers of railway rails and wheels. Steel tech. 2008, vol. 3, no. 1, pp. 19–23.
7. Ivanisenko Yu., Maclaren I., Souvage X., Valiev R.Z., Fecht H.J. Shearinduced α→γ transformation in nanoscale Fe-C composite. Acta Mater. 2006, vol. 54, no. 6, pp. 1659–1669.
8. Ning Jiangli, Courtois-Manara E., Kormanaeva L., Ganeev A.V., Valiev R.Z., Kubel C., Ivanisenko Yu. Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion. Mater. Sci. and Eng. A. 2013, vol. 581, pp. 81–89.
9. Gavriljuk V.G. Decomposition of cementite in pearlitic steel due to plastic deformation. Mater. Sci. and Eng. A. 2003, vol. 345, no. 1-2, pp. 81–89.
10. Li Y.J., Choi P., Bochers C., Westerkamp S., Goto S., Raabe D., Kirchheim R. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater. 2011, vol. 59, no. 10, pp. 3965–3977.
11. Gavriljuk V.G. Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires. Scripta Mater. 2001, vol. 45, pp. 1469–1472.
12. Dao M., Lu L., Asaro R.J. etc. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Materialia. 2007, vol. 55, pp. 4041–4065.
13. Rybin V.V. Bol’shie plasticheskie deformatsii i razrushenie metallov [Large plastic deformation and fracture of metals]. Moscow: Metallurgiya, 1986, 224 p. (In Russ.).
14. Glezer A.M. On the nature of ultrahigh plastic (Megaplastic) strain. Bulletin of the Russian Academy of Sciences: Physics. 2007, vol. 71, no. 12, pp. 1722-1730.
15. Gromov V.E., Kozlov E.V., Bazaikin V.I. etc. Fizika i mekhanika volocheniya i ob”emnoi shtampovki [Physics and mechanics of drawing and forging]. Moscow: Nedra, 1997, 293 p. (In Russ.).
16. Tomas Gareth, Goringe Michael J. Transmission electron micro scopy of materials. New York-Chichester-Brisbane-Toronto, John Wiley Sons, 1979, 320 p. (Russ.ed.: Tomas G., Goringe M. Prosvechivayushchaya elektronnaya mikroskopiya materialov. Moscow: Nauka, 1983, 320 p.).
17. Hirsch P.B., Howie A., Nicholson R., Pashley D.W., Whelan M.J. The Electron Microscopy of Thin Crystals. Butterworths, 1965549 p. (Russ.ed.: Hirsh P., Hovi R., Nicholson R. Elektronnaya mikroskopiya tonkikh kristallov. Moscow: Mir, 1968, 574 p.).
18. Utevskii L.M. Difraktsionnaya elektronnaya mikroskopiya v metal lovedenii [Diffraction electron microscopy in metallurgy]. Moscow: Metallurgiya, 1973, 584 p. (In Russ.).
19. Egerton Ray F. Physical Principles of Electron Microscopy. An Introduction to TEM, SEM, and AEM. Berlin: Springer Science+Business Media, Inc, 2005, 211 p.
20. Kumar C.S.S.R. Transmission Electron Microscopy Characterization of Nanomaterials. New York: Springer, 2014, 717 p.
21. Carter C. Barry, Williams David B. Transmission Electron Microscopy. Berlin: Springer International Publishing, 2016, 518 p.
22. Gromov V.E., Yuriev A.B., Morozov K.V., Ivanov Yu.F. Microstructure of Quenched Rails. Cambridge: CISP Ltd, 2016, 225 p.
23. Bakharev O.G., Gavriljuk V.G., Nadutov V.M. Redistribution of carbon atoms during deformation and subsequent heating of Fe-C martensite. Physics of Metals and Metallography. 1990, vol. 70, no. 5, pp. 196–198. (In Russ.).
24. Bakharev O.G., Gavriljuk V.G., Nadutov V.M., Oshkaderov S.P. Fine structure of deformed extracted cementite. Metallofizika. 1988, vol. 10, no. 6, pp. 82–83. (In Russ.).
Review
For citations:
Ivanov Yu.F., Yur’ev A.A., Gromov V.E., Konovalov S.V., Peregudov O.A. TRANSFORMATION OF CARBIDЕ PHASE IN RAILS AT LONG-TERM OPERATION. Izvestiya. Ferrous Metallurgy. 2018;61(2):140-148. (In Russ.) https://doi.org/10.17073/0368-0797-2018-2-140-148