Preview

Izvestiya. Ferrous Metallurgy

Advanced search

STUDY OF THE QUALITY OF WELD SEAM OBTAINED BY WELDING WITH BARIUM-STRONTIUM CARBONATITE FLUX

https://doi.org/10.17073/0368-0797-2018-2-108-113

Abstract

The results of barium-strontium carbonatite application in metallurgy for modifying and refining iron-carbon alloys are generalized. It  is proposed to use bariumstrontium carbonate in welding fluxes manufacturing. BSK-2 barium-strontium modifier produced according to TU1717-001-75073896-2005 by “NPK Metalltekhnoprom” LLC of the following chemical composition: 13.019.0%ВаО, 3.5 – 7.5 % SrO, 17.5– 25.5 %СаО, 19.8– 29.8 % SiO2, 0.7– 1.1 %MgO, 2.5– 3.5 % K2О, 1.0– 2.0 % Na2O, 1.5– 6.5 % Fe2O3, 0 – 0.4 % MnO, 1.93.9% Аl2O3, 0.71.1% TiO2,16.0 -20.0% CO2 was applied. Technology of manufacturing a flux agent containing 70% of barium-strontium carbonatite and 30% of liquidglass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. Flux agent was added in an amount of 1, 3 and 5%. Technological specifications of welding under investigated compositions of welding fluxes are determined. X-ray spectral analysis of chemical composition of the investigated fluxes, slag crusts and weld metal were carried out, as well as metallographic investigations of welded joints. Principle possibility of barium-strontium carbonatite application as refining and gas-protective additive for welding fluxes is shown. Application­ of barium-strontium carbonatite provides reduction of weld metal conta­ mination with nonmetallic inclusions: non-deflecting silicates, 1D oxides and brittle silicates, and also increase desulfurizing ability of welding fluxes. Introduction of barium-strontium carbonatite into fluxbased on silicic and manganese slag in an amount of up to 5% provides ferrite-pearlitic structure of the weld metal of Widmanstatten orientation, while the grain size slightly reduces from no.4 to no.4, no.5.

About the Authors

N. A. Kozyrev
Siberian State Industrial University
Russian Federation

Dr. Sci. (Eng.), Professor, Head of the Chair “Materials, Foundry and Welding Production”.

Novokuznetsk 



R. E. Kryukov
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Materials, Foundry and Welding Production”.

Novokuznetsk

 

 



A. A. Usol’tsev
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Materials, Foundry and Welding Production”.

Novokuznetsk

 

 



O. D. Prokhorenko
Siberian State Industrial University
Russian Federation

Cand. Sci. (Eng.), Senior Lecturer of the Chair “Thermal Power and Ecology”.

Novokuznetsk

 

 



V. G. Aimatov
Siberian State Industrial University
Russian Federation

MA Student of the Chair “Materials, Foundry and Welding Production”.

Novokuznetsk

 

 



References

1. Rafael Quintana Puchol, Jeily Rodríguez Blanco, Lorenzo Perdomo Gonzalez, Gilma Castellanos Hernández & Carlos Rene Gómez Pérez. The influence of the air occluded in the deposition layer of flux during automatic welding: a technological aspect to consider in the quality of the bead. Welding International. 2009, vol. 23, no.  2, pp. 132–140.

2. Crespo A.C., Puchol R.Q., Goncalez L.P., Sanchez L.G., Gomez Perez­ C.R., Cedre E.D., Mendez T.O., Pozol J.A. Obtaining a submerged arc welding flux of the MnO–SiO2–CaO–Al2O3–CaF2 system by fusion. Welding International. 2007, vol. 21, no. 7, pp.  502–511.

3. Amado Cruz Crespo, Rafael Quintana Puchol, Lorenzo Perdomo González, Carlos R. Gómez Pérez, Gilma Castellanos, Eduardo Díaz Cedréa & Tamara Ortíz. Study of the relationship between the composition of a fused flux and its structure and properties. Welding International. 2009, vol. 23, no. 2, pp. 120–131.

4. Golovko V.V., Potapov N.N. Special features of agglomerated (ceramic) fluxes in welding. Welding International. 2011, vol. 25, no.  11, pp. 889–893

5. Volobuev Yu.S., Volobuev O.S., Parkhomenko A.G., Dobrozhela E.I., Klimenchuk O.S. Using a new general-purpose ceramic flux SFM-101 in welding of beams. Welding International. 2012, vol.  26, no. 8, pp. 649–653.

6. Volobuev Yu.S., Surkov A.V., Volobuev O.S., Kipiani P.N., Shestov  D.V., Pavlov N.V., Savchenko A.I. The development and properties of a new ceramic flux used for reconditioning rolling stock components. Welding International. 2010, vol. 24, no. 4, pp. 298–300.

7. Potapov N.N., Kurlanov S.A. А criterion for evaluating the activity of fused welding fluxes. Welding International. 1987, vol. 1, no. 10, pp. 951–954.

8. Babushkin P.L., Persits V.Yu. Determination of hydrogen in the form of moisture in basic electrode coatings and fluxing materials in metallurgical production. Welding International. 1991, vol. 5, no.  9, pp. 741–742.

9. Pavlov I.V., Oleinichenko K.A. Regulating generation of CO by varying the composition of ceramic fluxes. Welding International. 1995, vol. 9, no. 4, pp. 329–332.

10. Chigarev V.V., Kosenko A.A. Regulating the silicon‐reduction process in welding under ceramic fluxeswith an active deoxidising agent. Welding International. 1994, vol. 8, no. 10, pp. 808–809.

11. Kurlanov S.A., Potapov N.N., Natapov O.B. Relationship of physical and welding‐technological properties of fluxesfor welding low alloy steels. Welding International. 1993, vol. 7, no. 1, pp. 65–68.

12. Bublik O.V., Chamov S.V. Advantages and shortcomings of ceramic (agglomerated) fluxes in comparison with fused fluxes used for the same applications. Welding International. 2010, vol. 24, no. 9, pp.  730–733.

13. Deryabin A.A., Pavlov V.V., Mogil’nyi V.V., Godik L.A., Tsepelev V.S., Konashkov V.V., Gorkavenko V.V., Berestov E.Yu. Nanomodification of rail steel with barium. Steel in Translation. 2007, vol. 37, no. 11, pp. 966–973.

14. Deryabin A.A., Berestov E.Yu. Mechanism of the modification of steel by alkaline-earth metals. Russian Metallurgy (Metally). 2008, no. 8, pp. 734–736.

15. Ryabchikov I.V., Mizin V.G., Lyakishev N.P., Dubrovin A.S. Ferrosplavy s redkozemel’nymi i shchelochnozemel’nymi metallami [Ferroalloys with rare earth and alkaline earth metals]. Moscow: Metallurgiya, 1983, 272 p. (In Russ.).

16. Grigor’ev Yu.V., Ryabchikov I.V., Roshchin V.E. Thermodynamic analysis of joint reduction of silicon and barium by carbon. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2005, no. 7, pp. 3–5. (In Russ.).

17. Chernyak S.S., Romen B.M. Vysokomargantsovistaya stal’ v dragostroenii [High-manganese steel in dredger machine building]. Irkutsk: Izd-vo Irkutskogo universiteta, 1996, 377 p. (In Russ.).

18. Ivakin B.L., Chernyak S.S., Pimnev D.Yu. Novaya tekhnologiya povysheniya kachestva metallov i splavov bariistrontsievym karbonatom [A new technology for improving quality of metals and alloys with barium-strontium carbonate]. Irkutsk: Izd-vo Irkutskogo gosuniversiteta, 2004, 123 p. (In Russ.).

19. Rozhikhina I.D., Nokhrina O.I., Dmitrienko V.I., Platonov M.A. Modification of steel by barium and strontium. Izvestiya VUZov Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2015, vol.  58, no. 12, pp. 871–876. (In Russ.).

20. Vatolin I.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh [Thermodynamic modeling in high-temperature inorganic systems]. Moscow: Metallurgiya, 1994, 352 p. (In Russ.).

21. Trusov B.G. TERRA software system for modeling phase and chemical equilibria at high temperatures. In: III Mezhdunarodnyi simpozium “Gorenie i plazmokhimiya” Almaty, Kazakhstan [The 3rd Int. Symposium “Burning and Plasmochemistry”]. Almaty: Kazak universiteti, 2005, pp. 52–57. (In Russ.).

22. Volobueva Yu.S., Volobueva O.S., Parkhomenkob A.G., Dobrozhelac E.I., Klimenchukd O.S. Using a new general-purpose ceramic flux SFM-101 in welding of beams. Welding International. 2012, vol. 26, no. 8, pp. 649–653.

23. Golovko V.V., Potapov N.N. Special features of agglomerated (ceramic) fluxes in welding. Welding International. 2011, vol. 25, no.  11, pp. 889–893.

24. Kryukov R.E., Bendre Yu.V., Kozyrev N.A., Osetkovskii I.V., Goryushkin V.F. Redox processes in welding with carbon containing flux. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2014, no. 10, pp. 25–28. (In Russ.).

25. Kryukov R.Е., Kozyrev N.А., Galevsky G.V., Bendre Y.V., Goryushkin V.F., Valuev D.V. Some aspects of oxidation-reduction under carbon-bearing flux welding. IOP Conference Series: Materials Science and Engineering. 2015, vol. 91, 012016: VI International Scientific Practical Conference on Innovative Technologies and Economics in Engineering 21–23 May 2015, Yurga, Russia.

26. Lipatova U.I., Matinin I.V., Provodova A.A., Kuz’menko D.I. Influence of the addition of barium strontium carbonatite in flux on quality of weld seam. In: Nauka i molodezh’: problemy, poiski, reshe­ niya: sbornik trudov Vserossiiskoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh [Science and Youth: Problems, Searches, Solutions: Coll. of Papers of the All-Russian Sci. Conf. of Students, Graduate Students and Young Scientists]. Vol. 20, part III. Novokuznetsk: SibGIU, 2016, pp. 266–271. (In Russ.).


Review

For citations:


Kozyrev N.A., Kryukov R.E., Usol’tsev A.A., Prokhorenko O.D., Aimatov V.G. STUDY OF THE QUALITY OF WELD SEAM OBTAINED BY WELDING WITH BARIUM-STRONTIUM CARBONATITE FLUX. Izvestiya. Ferrous Metallurgy. 2018;61(2):108-113. (In Russ.) https://doi.org/10.17073/0368-0797-2018-2-108-113

Views: 598


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)