Preview

Izvestiya. Ferrous Metallurgy

Advanced search

THE USE OF PHYSICAL MODELING TO DETERMINE TEMPERATURE FIELD IN THE BILLET

https://doi.org/10.17073/0368-0797-2018-1-12-20

Abstract

When heating billets in a furnace for heat treatment and metal forming, it should be possible to quickly heat the surface of the billet with a minimum differential temperature in its cross-section, which depends on the initial temperature of the surface and the center of the billet, the initial furnace temperature and the speed of its increasing. The temperature difference over the cross section of the billet contributes to thermal stresses in it. In the process of billets heating, thermal stresses must not exceed allowable stress values in the elastic region, depending on the thickness of the heated layer of metal and its chemical composition. Thus, to obtain high-quality billets at a maximum furnace performance, it is necessary to use the optimal heating mode, the testing of which to avoid high material costs can be realized by using physical modeling. Physical modeling of the object of study  – real sample is replaced by a model where the heating is carried out in a furnace model. For physical modeling, one need to choose material of the model, to select or manufacture the furnace model, to calculate the linear scale of the model and to make it possible to calculate the temperature and time scales of modeling, according to which to make model heating at model furnace with the measurement of the temperature field of the model with a further recalculation of the temperature on a real sample. The calculating method is proposed for the temperature field in an industrial billet of ShKh15 steel heated for heat treatment, namely for softening annealing, in an electric well, using physical modeling, conducted in a laboratory chamber electric furnace. The article justifies the choice of material for making the model, and the method of calculation linear, temperature and time scale of the simulation. Based on the experimental measurements of the temperature on the surface and in the center of the model when it is heated in an electric chamber furnace model, the recalculations are given for the temperature field over the cross section of the industrial bloom in different time periods using the received scale.

About the Author

O. B. Kryuchkov
Volgograd State Technical University
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair of Materials Technology


References

1. El  Fakir  O.  etc.  Numerical  study  of  the  solution  heat  treatment,  forming,  and  in-die  quenching  (HFQ)  process  on AA5754.  International Journal of Machine Tools and Manufacture. 2014, vol. 87,  pp. 39–48.

2. Su  B.  etc.  Numerical  simulation  of  microstructure  evolution of heavy steel casting in casting and heat treatment processes. ISIJ international. 2014, vol. 54, no. 2, pp. 408–414.

3. Zhou  S.  etc.  Numerical  simulation  and  experimental  investigation on densification, shape deformation, and stress distribution of  Ti6Al4V compacts during hot isostatic pressing. The International Journal of Advanced Manufacturing Technology.  2017,  vol.  88,  no.  1-4, pp. 19–31.

4. Zhao  Guo,  Jianxin  Zhou,  Dongqiao  Zhang,  Yangdong  Li,  Yajun  Yin. Numerical simulation of the through process of aerospace titanium alloy casting filling, solidification, and hot isostatic pressing. 8th International Conference on Physical and Numerical Simulation of Materials Processing (ICPNS), 14–17 October 2016, Seattle, Washing ton.

5. Novosel’tsev  V.N.  Advantages  and  disadvantages  of  mathematical  modeling.  Fundamental'nye issledovaniya.  2004,  no.  6, pp.  121–122. (In Russ.).

6. Kryuchkov  O.B.,  Kopasov  E.A.,  Ronenko  V.O.  Optimization of heating of massive billets using physical modeling. Izvestiya Volg-GTU. Seriya Problemy materialovedeniya, svarki i prochnosti v mashinostroenii. Issue 7, 2013, no. 6 (109), pp. 135-137. (In Russ.).

7. Zolotukhin N.M. Nagrev i okhlazhdenie metalla [Heating and cooling of metal]. Moscow: Mashinostroenie, 1973, 192 p. (In Russ.).

8. Osnovin  V.N.,  Shulyakov  L.V.,  Dubyago  D.S.  Spravochnik po stroitel’nym materialam i izdeliyam [Reference book on construction materials and products]. Rostov-on-Don: Feniks, 2008, 443 p.  (In Russ.).

9. Grishuk T.V. Stroitel’nye materialy i izdeliya [Construction materials and products]. Minsk: Dizain PRO, 2004, 312 p. (In Russ.).

10. Domokeev  A.G.  Stroitel’nye materialy [Construction  materials].  Moscow: Vysshaya shkola, 1988, 415 p. (In Russ.).

11. Yurenev V.N., Lebedev L.D. Teplotekhnicheskii spravochnik[Reference book on heat engineering]. Moscow: Energiya, 1976, 896 p.  (In Russ.).

12. Krivandin  V.A.,  Arutyunov  V.A.,  Belousov  V.V.  etc.  Teplotekhnika metallurgicheskogo proizvodstva. T. 1. Teoreticheskie osnovy: uchebnoe posobie dlya vuzov [Heat  engineering  of  metallurgical  production. Vol. 1. Theoretical bases: Manual for universities]. Moscow: MISIS, 2002, 608 p. (In Russ.).

13. Krivandin V.A., Belousov V.V., Sborshchikov G.S. etc. Teplotekhnika metallurgicheskogo proizvodstva. T. 2. Konstruktsiya i rabota pechei: uchebnoe posobie dlya vuzov [Heating engineering of metallurgical  production.  Vol.  2.  Design  and  operation  of  furnaces:  Manual for universities]. Moscow: MISIS, 2002, 736 p. (In Russ.).

14. Krivandin V.A., Markov B.L. Metallurgicheskie pechi [Metallurgical furnaces]. Moscow: Metallurgiya, 1977, 464 p. (In Russ.).

15. Kryuchkov O.B., Ivanov A.S., Kostryukov A.S. Computer modeling for the analysis of temperature fields in heated metal billets. Izvestiya VolgGTU. Seriya Problemy materialovedeniya, svarki i prochnosti v mashinostroenii. 2014, no. 9 (136), pp. 127–129. (In  Russ.).

16. Kryuchkov  O.B.,  Volchkov  V.M.,  Krokhalev A.V.  Modelirovanie i teplotekhnicheskie raschety protsessov v nagrevatel’nykh i termicheskikh pechakh. Chast’ 2. Ispol’zovanie vychislitel’noi tekhniki dlya rascheta vremeni nagreva metallicheskikh izdelii: ucheb. posobie [Modeling and thermo-technical calculations of processes in  heating and thermal furnaces. Part 2. Using computer technology for calculating the heating time of metal products: Manual]. Volgograd:  VolgGTU, 2017, 183 p. (In Russ.).

17. Afonin  V.V.,  Fedosin  S.A.  Modelirovanie sistem: uchebno¬prakticheskoe posobie [Systems  modeling:  Manual].  Moscow:  Intuit,  2016, 231 p. (In Russ.).

18. Belov  V.V.  Komp’yuternoe modelirovanie i optimizirovanie sostavov kompozitsionnykh stroitel’nykh materialov:Monografiya[Computer modeling and optimization of the compositions of composite  constructing  materials:  Monograph].  Moscow: ASV,  2015,  264 p. (In Russ.).

19. Sawaragi Y.,  Soeda T.,  Omatu  S.  Modeling, estimation and their applications for distributed parameter system. Berlin–Heidelberg–  –New York: Springer–Verlag, 1978.

20. Belov N.N., Kopanitsa D.G., Yugov N.T. Matematicheskoe mode¬lirovanie dinamicheskoi prochnosti konstruktsionnykh materialov. Uchebnoe posobie [Mathematical modeling of the dynamic strength  of structural materials: Manual]. Moscow: ASV, 2013, 562 p. (In  Russ.).

21. Li Zongyu, Barr P.V., Brimacombe J.K. Computer Simulation of the Slab Reheating Furnace. Canadian Metallurgical Quarterly. 1988,  vol. 27, pp. 187–196.

22. Golubeva N.V. Matematicheskoe modelirovanie sistem i protsessov: Uchebnoe posobie [Mathematical modeling of systems and processes: Manual]. St. Petersburg: Lan’, 2013, 192 p. (In Russ.).

23. Wang H., Li G., Lei Y., Zhao Y., Dai Q., Wang J. Mathematical heat transfer model research for the improvement of continuous casting  slab temperature. The Iron and Steel Institute of Japan (ISIJ) International. vol. 45 (2005), no. 9, pp. 1291–1296.

24. Albertos P., Sala Piqueras A. Iterative Identification and Control: Advances in Theory and Applications. Springer-Verlag New York,  Inc. Secaucus, NJ, USA, 2002.

25. Jang J.H. etc. Investigation of the slab heating characteristics in a reheating furnace with the formation and growth of scale on the slab  surface.  International Journal of Heat and Mass Transfer.  2010,  vol. 53, pp. 4326–4332.

26. Zhirkov A.M., Podoprigora G.M., Tsutsunava M.R. Matematicheskoe modelirovanie sistem i protsessov: uchebnoe posobie [Mathematical modeling of systems and processes: Manual]. St. Peters-burg: Lan’ KPT, 2016, 192 p. (In Russ.).


Review

For citations:


Kryuchkov O.B. THE USE OF PHYSICAL MODELING TO DETERMINE TEMPERATURE FIELD IN THE BILLET. Izvestiya. Ferrous Metallurgy. 2018;61(1):12-20. (In Russ.) https://doi.org/10.17073/0368-0797-2018-1-12-20

Views: 862


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)