Preview

Izvestiya. Ferrous Metallurgy

Advanced search

DEVELOPMENT OF THE METHOD OF GAS MOLDING WITH BACK PRESSURE AND CREATION OF THE EQUIPMENT FOR ITS IMPLEMENTATION

https://doi.org/10.17073/0368-0797-2018-1-6-11

Abstract

Technological machines and equipment used in the food, chemical and other industries, are produced in relatively small batches.  These machines and equipment contains a large number of sheet metal  parts of complex shape having a relatively small height. Traditional methods of stamping are not sufficiently effective for the production  of such parts in small batch production. For the efficient production  of such parts there is a new method for sheet metal forming – forming  gas backpressure. The essence of this method lies in the fact that the  unilateral influence of the hot gas sheet billet is heated to a predetermined temperature, and then is formed. Thus to limit the deformation  of the billet during its heating on the opposite side it creates pressure  the influence of compressed air. As the hot gas a combustion gas-air  mixtures is used. Due to the heating of the billet up to the temperature  range of the warm hot treatment this method provides obtaining of  complex-shaped parts in one work step, which significantly reduces  the cost of production. Studying the heating process of the billet set  up, the pattern of temperature change in time was determined, which  ensures the controllability of the process. The expressions for determining the gas pressure were derived, ensuring the implementation of  the molding process. To implement this method of molding installation for a gas forming a pressure is designed and developed containing device for forming the gas and fuel delivery and control. Using it  the experimental studies were made for the process of forming several  types of components: spherical bottoms, cylindrical part with a flange  part with a surface of double curvature, parts with small relief panels  of the heat exchanger with a helical channel. At the same time, optimal technologi cal regimes of gas molding are determined, ensuring  the obtaining of good quality parts. Experimental studies have shown  that this method of forming allows to obtain parts of complex shape in  one work step using a relatively simple stereotyped equipment. Due to  this application of the molding method can provide considerable cost  savings in parts production, especially in small-scale production. This  method is useful for forming steel parts with thickness up to 1.5  mm  and of parts made of nonferrous alloys with the thickness up to of  2  –  3  mm.

 

About the Authors

A. Yu. Botashev
North Caucasian State Academy of Humanities and Technology, Cherkessk
Russian Federation

Dr. Sc. (Eng.), Professor, Head of the Chair “Processing Machinery and Equipment



R. S. Malsugenov
North Caucasian State Academy of Humanities and Technology, Cherkessk
Russian Federation

Assistant of the Chair “Processing Machinery and Equipment”



N. U. Bisilov
North Caucasian State Academy of Humanities and Technology, Cherkessk
Russian Federation

Cand. Sci. (Eng.), Assist. Professor of the Chair “Processing Machinery and Equipment” 



References

1. Il’in L.N., Semenov E.I. Tekhnologiya listovoi shtampovki [Sheet  stamping technology]. Moscow: Drofa, 2009, 479 p. (In Russ.).

2. Bychkov S.A., Borisevich V.K., Krivtsov V.S., Bragin A.P. On the concept of using technological criteria for the selection of impulse technologies for sheet stamping. Aviatsionno¬kosmicheskaya tekhnika i tekhnologiya. 2007, no. 11, pp. 222–231. (In Russ.).

3. Sukhov  V.V.  Experience  of  gas  blasting  systems  with  multipoint  initiation  of  detonation  of  methane-oxygen  mixture.  Aviatsionnokosmicheskaya tekhnika i tekhnologiya. 2007, no. 11, pp. 182–185.  (In Russ.).

4. Borisevich V.K., Naryzhnyi A.G., Molodykh S.I. Influence of deformation on the transmission medium and precision stamping parts  with impulse. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya.  2007, no. 11 (47), pp. 173–181. (In Russ.).

5. Musaev A.A. Development of baseline data for the development of  research and industrial design of dual-chamber device for gas stamping. Izv. vuz. Mashinostroenie. 2012, no. 3, pp. 43–48. (In Russ.).

6. Taranenko M.E. Possibilities of stamping of auto body panels made of modern materials of increased strength at EG presses. Kuznech-no¬shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2014, no. 9, pp. 34–40. (In Russ.).

7. Knyazyev M.K., Chebanov Yu.I. Multi-electrode discharge blocks for electrohydraulic forming and their capabilities. Eastern¬Europe-an Journal of Enterprise Technologies. 2004, no. 3 (9), pp. 13–20.

8. Banabic  D.  Sheet metal forming processes.  Berlin-Heidelberg,  Springer Verlag, 2010, 340 p. 

9. Tumanov  Yu.N.  Plazmennye, vysokochastotnye, mikrovolnovye i lazernye tekhnologii v khimiko-metallurgicheskikh protsessakh [Plasma,  high-frequency,  microwave  and  laser  technologies  in  chemical  and  metallurgical  processes].  Moscow:  Fizmatlit,  2010,  968 p. 

10. Abedrabbo N., Pourbogrhrat F., Carsley J. Forming of aluminum  alloys  at  elevated  temperatures.  Part  2:  Numerical modeling and experimental verification. International Journal of Plasticity. 2006,  no. 22, p. 342–373.

11. Yakovlev S.P., Chudin V.N., Yakovlev S.S., Sobolev Ya.A. Izotermicheskoe deformirovanie vysokoprochnykh anizotropnykh metallov [Isothermal deformation of high-strength anisotropic metals]. Mos-cow: Mashinostroenie -1, Izd-vo TulGU, 2004, 427 p. (In Russ.).

12. Kovalevich M.V. Calculation of modes of pneumothermal molding  of box-shaped parts in superplasticity mode. Zagotovitel’noe proizvodstvo v mashinostroenii. 2006, no. 9, pp. 35–39. (In Russ.).

13. Larin S.N. Pneumoforming of mesh panels made of an anisotropic material. Izvestiya TulGU. Tekhnicheskie nauki. 2010, Issue 3,  pp.  51–61. (In Russ.).

14. Botashev A.Yu. Bisilov N.U. Study of gas sheet stamping with two-sided billet heating. Zagotovitel’nye proizvodstva v mashinostroenii.  2013, no. 3, pp. 25–28. (In Russ.).

15. Plaksin  Yu.M.,  Malakhov  N.N.,  Larin  V.A.  Protsessy i apparaty pishchevykh proizvodstv [Processes and devices of food manufactures]. Moscow: Kolos S, 2005. (In Russ.).

16. Antipov S.T., Kretov I.T., Ostrikov A.N. etc. Mashiny i apparaty pishchevykh proizvodstv. V 2 kn. Kn. 1: Uchebn. dlya vuzov [Machinery and equipment for food production. In 2 books. Book  1:Textbook for universites]. Panfilov V.A. ed. Moscow: Vysshaya shkola,  2001, 703 p. (In Russ.).

17. Verboloz E.I. , Kornienko Yu.I., Pal’chikov A.N. Tekhnologicheskoe oborudovanie: uchebnoe posobie [Technological  equipment:  Manual]. Saratov: Vuzovskoe obrazovanie, 2014, 205 p. (In Russ.).

18. Rumyantsev Yu.D., Kalyunov V.S. Kholodil’naya tekhnika: Ucheb. dlya vuzov [Refrigerators: Textbook for universities]. St. Petersburg:  Izd-vo Professiya, 2005, 360 p. (In Russ.).

19. Botashev A. Yu., Bisilov N.U., Malsugenov R.S. Ustroistvo dlya listovoi shtampovki vzryvom gazovykh smesei [A device for stamping by explosion of gas mixtures]. Utility model patent no. 150249  RF,  RU 150249 MPK B21 D 22/00. Byulleten’ izobretenii. 2015, no.  4.  (In Russ.).

20. Botashev A. Yu., Bisilov N.U., Malsugenov R.S. Development and  research of the device for forming a gas one-side heated billets. Izv. vuz. Mashinostroenie. 2014, no. 7, pp. 28–34. (In Russ.).

21. Erofeev V.L., Semenov P.D., Pryakhin A.S. Teplotekhnika: uchebnik dlya vuzov [Heat engineering: Textbook for universities]. Erofeev V.L. ed. Moscow: Akademkniga, 2008, 488 p. (In Russ.).

22. Gdalev A.V., Kozlov A.V., Saprunov Yu.I., Maiorov S.G. Teplotekhnika: uchebnoe posobie [Heat  engineering:  Manual].  Saratov:  Nauchnaya kniga, 2012, 286 p. (In Russ.).

23. Skhirtladze A.G., Romanovskii B.V., Volkov V.V., Potemkin A.N.  Soprotivlenie materialov: uchebnik [Strength  of  materials:  Textbook]. Moscow: Akademiya, 2012, 416 p. (In Russ.).


Review

For citations:


Botashev A.Yu., Malsugenov R.S., Bisilov N.U. DEVELOPMENT OF THE METHOD OF GAS MOLDING WITH BACK PRESSURE AND CREATION OF THE EQUIPMENT FOR ITS IMPLEMENTATION. Izvestiya. Ferrous Metallurgy. 2018;61(1):6-11. (In Russ.) https://doi.org/10.17073/0368-0797-2018-1-6-11

Views: 740


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)