Preview

Izvestiya. Ferrous Metallurgy

Advanced search

CURRENT STATE OF THE SCIENTIFIC PROBLEM OF WC–Co HARD ALLOYS SURFACE HARDENING (REVIEW)

https://doi.org/10.17073/0368-0797-2017-12-980-991

Abstract

The article presents the review of Russian and foreign researches on surface hardening of WC – Co hard alloys aiming at increasing their wear-resistance. There is a great reserve of increasing wear-resistance and operational durability of hard-alloy products in application of surface methods of hardening using different coatings and coating with basic structural components of up to 100  nanometers. The most widely spread coatings on WC – Co hard alloys are coatings made from TiC, TiN providing high energy lattice ties, high flowing temperature and hardness. Use of TiC, TiN as surface layers on hard-alloy tools results in reduction of friction coefficient in pair with steel in 1.5  –  2.0  times, but use of TiN  +  ZrN ionic-plasma coatings reduces friction coefficient in 5.9  times in comparison with the initial condition. Today multilayer coatings are very popular. The most widely spread are coatings of TiN  +  TiC and Al2 O3   +  TiC. Their surface wear is directly proportional to the coating thickness. Combined multilayer coatings described above are not the final solution to the problem of increasing wear resistance of hard alloys. The research projects are carried out in our country that are based on theoretical possibilities for obtaining strength of the hard alloy gradually from viscous and high-strength core to wear-resistant surface. The FSUE VNIITS has developed a  method for obtaining alloys with variable content of cobalt along the plate thickness. Due to this, it is possible to vary composition of alloys along the thickness of sample, from VK20 to VK2, as a result working part of plate has wear resistance equal to VK2 alloy, and the base enduressignificant bending stresses. Recently different cutting tools with diamond coatings on hard alloys have been used in Russia and all over the world. To increase the service life of hard-alloy plates of VK group, methods of hardening using concentrated energy flows are used. Among them there are hard alloys’surfaces treatment by γ-quanta, ion beams, laser beams; electro-explosive alloying, electro-erosion hardening by alloying etc. 

About the Authors

T. N. Oskolkova
Siberian State Industrial University, Novokuznetsk
Russian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Metal Forming and Metal Science”. EVRAZ ZSMK


A. M. Glezer
I.P. Bardin Central Research Institute of Ferrous Metallurgy, Moscow,
Russian Federation
Dr. Sci. (Phys.-Math), Professor, Director of the G.V.  Kurdyumov Institute of Metal Science and Physics of Metals


References

1. Panov V.S., Chuvilin A.M., Fal’kovskii V.A. Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh [Technology and properties of sintered hard alloys and products made of them]. Moscow: MISiS, 2004, 464 p. (In Russ.).

2. Khizhnyak V.G., Dolgikh V.Yu., Korol’ V.I. Structure and some properties of diffusion coatings of titanium, vanadium, chromium and boron on hard alloys. Nauchnye vesti natsion. tekhn. un-ta Ukrainy “Kievskii politekhnicheskii institut”. 2002, no. 1, pp.  74–79. (In Russ.).

3. Shourong L., Jianmin H., Lianging C., Junting S. Dynamic roentgenophased analysis of hard-facing alloy’s WC – Co boronizing with rare-earth metals. Zhongguo xitu xuebao. J. Chin. Rare Earth Soc. 2002, vol. 20, no. 1, pp. 26–29.

4. Shourong L., Jianmin H., Lianging C., Junting S. Mechanism of hard-facing alloy‘s WC-Co boronizing with rare-earth metals. Xiyou jinshu cailiao ya gongcheng. Rare Metal. Mater. and Eng. 2003, vol. 32, no. 4, pp. 305–308.

5. Shourong L., Jianmin H., Lianging C., Junting S. Phase analysis of cemented carbide WC-Co boronised with yttrium. J. Chin. Rare Earths Soc. 2002, vol. 40, no. 4, pp. 287–290.

6. Vereshchaka A.S., Vereshchaka A.A. Increasing effectiveness of the tool by controlling composition, structure and properties of coatings. Uprochnyayushchie tekhnologii i pokrytiya. 2005, no. 9, pp.  9–18. (In Russ.).

7. Tabakov V.P. Formirovanie iznosostoikikh ionno-plazmennykh pokrytii rezhushchego instrumenta [Formation of wear-resistant ion-plasma coatings for cutting tools]. Moscow: Mashinostroenie, 2008, 311 p. (In Russ.).

8. Vereshchaka A.S. Some methodological principles of creating functional coatings for cutting tools. In: Sovremennye tekhnologii v mashinostroenii [Modern technologies in mechanical engineering]. Kharkiv: izd. Khar’kovskogo politekhnicheskogo instituta, 2007, pp. 210–231. (In Russ.).

9. Oskolkova T.N. Wear resistant coating on hard alloy. Applied Mechanics and Materials. 2015, vol. 788, pp. 281–285.

10. Oskolkova T.N. Tungsten carbide hard alloy with wear-resistant coating. Izvestiya Samarskogo nauchnogo tsentra RAN. 2013, vol.  15, no. 4 (2), pp. 473–475. (In Russ.).

11. Panteleev I.B., Vladimirova M.D., Shavrova O.I., Ordan’yan S.S. Hard alloys on the base of tungsten carbide and complicated titanium (tungsten) carbonitride. Tsvetnye metally. 2004, no. 8, pp.  100  –  105. (In Russ.).

12. Chekhovoi A.N., Prokopova T.I., Bychkov V.M. Quasiamorphous metal-ceramic tool of the new generation. Konstruktsii iz kompozitsionnykh materialov. 1999, no. 3, pp. 13–19. (In Russ.).

13. Andryushin S.G., Kasatkin A.V., Kuchumova V.M. Mechanical features of adhesive compounds of buffer thin-film coatings with carbide supporting plate. Materialovedenie. 2003, no. 6, pp. 43–51. (In Russ.).

14. Kruglov A.I., Senchilo I.A., Fomichev A.M. Development of structure and composition of modified layer of working surfaces of metal-ceramic carbide cutting tools. Instrument i tekhnologii. 2004, no.  17-18, pp. 100–103. (In Russ.).

15. Kristofer Chetfild, Yan Lindstrem, Mate S’estrand, Marianna  Kollinz. Rezhushchaya plastina na osnove spechennogo tverdogo splava s pokrytiem [Cutting plate based on sintered hard carbide alloy with coating]. Patent no. 2010888 RF. 1994. (In Russ.).

16. Larsson Andreas, Zackrisson Jenni. Insertion of a coated cutting tool for machine treatment of cast iron. Patent no. 1531187 EPV. 2005.

17. Fadeev V.S., Chigrin Yu.N., Mokritskii B.Ya., Konakov A.V. Sposob polucheniya tverdosplavnogo instrumenta [Method of hard alloy tools production]. Patent no. 2211879 RF. Byulletenʹ izobretenii. 2003, no. 25. (In Russ.).

18. Okada Yoshin, Moriguchi Hideki, Ikegaya Akihiko. Coated carbide material. Patent 6756111 USA. 2004.

19. Lengauer Walter, Ucakar Vera, Dreyer Klaus, Kassel Dieter, Daub Hans. Product of hard alloy or cermets and process of its manufacturing. Patent no. 10342364 Germany. 2005.

20. Anikin V.N., Zolotareva N.N., Kazantsev N.I., Tambovtseva A.A., Pel’ts A.D., Ermolaev A.V., Fadeev V.S., Blinkov I.V. Sposob izgotovleniya smennykh mnogogrannykh plastin [Method of replaceable multiface plates manufacturing]. Patent no. 2302925 RF. Byulletenʹ izobretenii. 2007, no. 20. (In Russ.).

21. Oskolkova T.N. Sposob polucheniya izdeliya iz mnogosloinogo tverdogo splava na osnove karbida vol’frama [Method of product manufacturing from multilayered hard alloy based on tungsten carbide]. Patent no. 2401720 RF. Byulletenʹ izobretenii. 2010, no. 29. (In Russ.).

22. Oskolkova T.N. A new technology for producing carbide alloys with gradient structure. Applied Mechanics and Materials IOP Conf. Series: Materials Science and Engineering. 2015, vol. 91, pp. 012019.

23. Lengford Dzheims V. (Jr.), Del’viche Robert. Naplavka tverdym splavom s pokrytymi almaznymi chastitsami (varianty), prisadochnyi prutok dlya naplavki tverdym splavom, sposob naplavki tverdym splavom (varianty), konicheskoe sharoshechnoe doloto dlya vrashchatel’nogo bureniya (varianty), konicheskaya sharoshka [Surfacing with a hard alloy with coated diamond particles(variants), filler rod for hard alloy facing, a hard alloying method (variants), conical roller bit for rotary drilling (variants), conical cutter]. Patent no. 2167262 RF. Byulletenʹ izobretenii 2001, no. 14. (In Russ.).

24. Yo-shida Katsuhito, Shiraishi Junichi, Nakai Tetsuo. Polycrystalline diamond tool. Patent no. 6358624 USA. 2000.

25. Fal’kovskii V.A., Klyachko L.I., Smirnov V.A. Nanokristallicheskie i ul’tradispersnye poroshki vol’frama, karbida vol’frama i volframokobal’tovye tverdye splavy na ikh osnove [Nanocrystalline and ultradisperse powders of tungsten, tungsten carbide and tungsten-cobalt hard alloys based on them]. Moscow: FGUPS VNIITS, 2004. (In Russ.).

26. Andrievskii R.A. Superhard nanostructured materials based on refractory compounds. Zhurnal funktsional’nykh materialov. 2007, vol. 1, no. 4, pp. 129–133. (In Russ.).

27. Panov V.S. Nanotechnology in the production of hard alloys (Review). Izv. vuz. Tsvetnaya metallurgiya. 2007, no. 2, pp. 63–68. (In Russ.).

28. Bock A., Zeiler B. Production and characterization of ultrafine WC powders. Int. J. Refrac. Met. Hard Mater. 2002, vol. 20, pp. 23–30.

29. Blinkov I.V., Manukhin A.V. Nanodispersnye i granulirovannye materialy, poluchennye v impul’snoi plazme [Nanodispersed and granulated materials obtained in pulsed plasma]. Moscow: MISiS, 2004, 367 p. (In Russ.).

30. Amosov A.P., Borovinskaya I.P., Merzhanov A.G., Sychev A.E. Self-propagating high-temperature synthesis as the newest technological process for nanopowders production. Konstruktsii iz kompozitsionnykh materialov. 2006, no. 4, pp. 17–19. (In Russ.).

31. Klyachko L.I. Fine and ultrafine hard metals at Plansee. Metal. Powder Report. 2001, vol. 56, no. 11, pp. 24.

32. Liu Y., Vid Q., Li Y. Synthesis and tribological of electroless NiP-WC nanocomposite coatings. Surface and Coatings Technology. 2007, vol. 201, no. 16-17, pp. 7246–7251.

33. Samokhin A.V., Alekseev N.V., Tsvetkov Yu.V. Plasma-assisted processes for manufacturing nanosized powder materials. High Energy Chemistry. 2006, vol. 40, no. 2, pp. 93–97.

34. Ban Z.-G., Shaw L.L. Synthesis and processing of nanostructured WC-Co materials. J. Mater. Sci. 2002, vol. 37, no. 16, pp. 3397–3403.

35. Korotaev A.D., Moshkov V.Yu., Ovchinnikov S.V., Pinzhin Yu.P., Savostikov V.M., Tyumentsev A.N. Nanostructured and nanocomposite superhard coatings. Fizicheskaya mezomekhanika. 2005, vol.  8, no. 3, pp. 103–116. (In Russ.).

36. Veprek S., Veprek-Hejman M.G.J, Kavrankova P., Prohazka J. Different approaches to superhard coatings and nanocomposite. Thin Solid Films. 2005, vol. 476, pp. 1–29.

37. Musil J., Hruby H., Zeeman P. Hard and superhard nanocomposite Al–Co–N films prepared by magnetron sputtering. Surf. and Coats. 1999, vol. 155, pp. 32–37.

38. Holubar P., Jilek M., Sima M. Nanocomposite nc-TiAlSiN and ncTiN-BN coatings: their applications on substrates made of cemented carbide and results of cutting tests. Surf. and Coatings Technol. 1999, vol. 120-121, pp. 184–188.

39. Vaz F., Rebouta L., Goudea Ph. Residual stress in sputtered Ti1-xSix Ny films. Thin Solid Films. 2002, vol. 402, pp. 195–202.

40. Jedrzejonski P., Klemberg-Sapieha J.E., Martinu L. Relationship between the mechanical properties and the microstructure of nanocomposite, TiN/SiNi3 coatings prepared by low temperature plasma enhanced chemical vapor deposition. Thin Solid Films. 2003, vol.  426, pp. 150–159.

41. Mayrhofer P.H., Kunc F., Musil J., Mitterer C. A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films. 2002, vol. 415, pp. 151–159.

42. Pinakhin I.A., Kopchenkov V.G. Increase of working capacity of metal-cutting tool made of hard alloys by pulse laser treatment. Vestnik Sev.- Kavk. GTU. 2010, no. 4, pp. 90. (In Russ.).

43. Grigor’yants A.G., Yares’ko S.I. Investigation of stressed state of carbide phase of VK6 hard alloy under pulsed laser treatment. Sverkhtverdye materialy. 1991, no. 1, pp. 49–56. In Russ.).

44. Yares’ko S.I., Kobeleva T.K. Change in fine structure of carbide phase of solid alloys of WC-Co system under laser treatment. Sverkhtverdye materialy. 1996, no. 1, pp. 52–57. (In Russ.).

45. Iskhakova G.A., Sindeev V.I. Study of high-speed deformation of tungsten carbide. Sverkhtverdye materialy. 1983, no. 5, pp. 49–54. (In Russ.).

46. Gureev D.M., Laletin A.P., Chulkin V.N., Yares’ko S.I. On the state of fine structure of carbides in VK8 hard alloy in pulsed laser treatment zone. Fizika i khimiya obrabotki materialov. 1987, no. 6, pp.  36–40. (In Russ.).

47. NesterenkoV.P.,Aref’ev K.P., KondratyukA.A., MerkulovV.I., Surkov A.S. Electric strength of polyoxide structures formed on the surface of composite materials under heating after preliminary laser treatment. Fizika i khimiya obrabotki materialov. 2002, no. 5, pp.  9–13. (In Russ.).

48. RamkumarJ.,Aravindan S., Malhotra S.K., Krishnamurthy R. Enhancing themetallurgical properties ofWCinsert(K-20) cutting tool through microwave treatment. Mater. Lett. 2002, vol. 53, no.  3, pp. 200–204.

49. Ivanov A.N., Korshunov A.B., Yakovtsova M.M. Effect of highspeed heat treatment on fine structure of tungsten carbide in a VK8 shard alloy. In: Strukturnye osnovy modifikatsii materialov metodami netraditsionnykh tekhnologii: sb. nauch. tr. 6 mezhgosud. seminara [Structural fundamentals of material modification by means of non-traditional technologies: Papers of the 6th Int. Seminar]. Obninsk, 2001, pp. 21. (In Russ.).

50. Poleshchenko K.N., Povoroznyuk S.N., Boboi A.O., Ivanov Yu.F. Changes in tribological properties of metal-ceramic hard alloys by ion-plasma and ion-beam treatment. Fizika i khimiya obrabotki materialov. 2002, no. 2, pp. 5–8. (In Russ.).

51. Boboi A.O., Poleshchenko K.N., Povoroznyuk S.N. etc. Complex modification of carbide cutting tools using ion beams of high specific power. In: Materialy i tekhnologii 21-go veka: sb. nauch. tr. Ch.  1 [Materials and technologies of the 21st century: Proceedings. Part  1]. Penza: Izd-vo Privolzh. Dom znanii, 2001, pp. 87–89. (In Russ.).

52. Remnev G.E., Semukhin B.S., Struts V.K. etc. Investigation of structure of hard alloy based on tungsten carbides and titanium subjected to powerful pulsed ion irradiation. Fizika i khimiya obrabotki materialov. 1998, no. 5, pp. 19–22. (In Russ.).

53. Ivanov A.N., Khmelevskaya V.S., Antoshina I.A., Korshunov A.B. Structural changes in VK8 hard alloy under ion irradiation. Perspektivnye materialy. 2003, no. 1, pp. 89–92. (In Russ.).

54. Tarbokov V.A., Remnev G.E., Kuznetsov P.V. Modification of carbide plates based on tungsten carbide by powerful pulsed ion beam. Fizika i khimiya obrabotki materialov. 2004, no. 3, pp. 11–17. (In Russ.).

55. Petrenko P.V., Gritskevich A.L., Kulish N.P., Mel’nikova N.A., Rozhkovskii A.N. Influence of radiation defects on structural-phase transformations in WC-Co alloys. In: Strukturnye osnovy modifikatsii materialov metodami netraditsionnykh tekhnologii: Sb. nauch. tr. 6 Mezhgosud. seminara [Structural fundamentals of material modification by means of non-traditional technologies: Papers of the 6th Int. Seminar]. Obninsk, 2001, pp. 85. (In Russ.).

56. Petrenko P.V., Grabovskii Yu.E., Gritskevich A.L., Kulish N.P. Structural-phase transformations in WC-Co hard alloys irradiated with a low-flux electron beam. Fizika i khimiya obrabotki materialov. 2003, no. 3. pp. 29–39. (In Russ.).

57. Mamontov A.P., Chernov I.P., Ryabchikov S.Ya. Sposob uprochneniya tverdosplavnogo instrumenta [Method for hardening of carbide tools]. Patent no. 2092282 RF. 1997. (In Russ.).

58. Korshunov A.B., Shamaev B.V., Shorin A.M., Shesterikov S.A., Pikunov D.V., Shchurkova V.V., Danilov S.L. Sposob obrabotki plastin iz tverdykh splavov [Method of hard alloys plates processing]. Patent no. 93057445 RF. 1996. (In Russ.).

59. Timoshnikov Yu.A., Klopotov A.A, Ivanov Yu.F. Change in structural-phase state of VK8 alloy under the influence of gamma-ray flux. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2001, no. 4, pp. 40–43. (In Russ.).

60. Puchkareva L.N., Poleshchenko K.P., Poletika M.F. Sposob ionnoluchevoi obrabotki rezhushchego instrumenta iz tvedykh splavov [Method of ion-beam treatment of cutting tools made of hard alloys]. Patent no. 1707997 RF. 1997. (In Russ.).

61. Oskolkova T.N., Budovskikh E.A, Goryushkin V.F. Features of structure formation of the surface layer in the course of electroexplosive alloying tungsten carbide hard alloy. Non-Ferrous Metals. 2014, vol. 55, no. 2, pp. 196–200.

62. Oskolkova T.N., Budovskikh E.A. Pulse plasma treatment of the surface of alloy VK10KS. Metal Science and Heat Treatment. 2012, vol. 53, no. 11, pp. 608–610.

63. Oskolkova T.N., Budovskikh E.A. Electric explosion alloying of the surface of hard alloy VK10KS with titanium and silicon carbide. Metal Science and Heat Treatment. 2013, vol. 55, no. 1-2, pp.  96–99.

64. Oskolkova T.N., Budovskikh E.A. Change in structure of the surface of VK10KS alloy after electroexplosive treatment with boron. Tekhnologiya metallov. 2012, no. 3, pp. 13–18. (In Russ.).


Review

For citations:


Oskolkova T.N., Glezer A.M. CURRENT STATE OF THE SCIENTIFIC PROBLEM OF WC–Co HARD ALLOYS SURFACE HARDENING (REVIEW). Izvestiya. Ferrous Metallurgy. 2017;60(12):980-991. (In Russ.) https://doi.org/10.17073/0368-0797-2017-12-980-991

Views: 954


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0368-0797 (Print)
ISSN 2410-2091 (Online)