THERMODYNAMIC MODELING OF THE PROCESS OF METAL DESULPHURATION BY BORON CONTAINING SLAGS OF THE СaО–SiO2 –MgO–Al2 O3 –B2 O3 SYSTEM
https://doi.org/10.17073/0368-0797-2017-12-955-959
Abstract
Thermodynamic modeling of process of metal desulphurization with boron-containing slags of the СаО – SiO2 – MgO – Al2 O3 – B2 O3 system was carried out using HSC 6.1 Chemistry (Outokumpu) software. Influence of process temperature (1500-1700 °С), basicity of slag (2 – 5) and content of В2 О3 (1 – 4 %) on desulphurization of steel was studied. It was established that increase in temperature of metal desulphurization process from 1500 °C to 1700 °C helps to reduce sulfur content in the studied range of slag basicity. At temperature of 1600 °C, sulfur content in metal was 0.0052 % for slag basicity of 2, and at 1650 °C its concentration was 0.0048 %. Increase in basicity of slag from 2 to 5 had encouraging effect on the degree of metal desulfurization, increasing it from 80.7 to 98.7 %, respectively, at temperature of 1600 °C. At the same time, an increase in В2 О3 concentration in slag had a negative effect on the process of metal desulfurization. Slag with basicity of 2, containing 1 and 4 % of В2 О3 , allowed to obtain the amount of sulfur in metal, 0.0052 % and 0.0098 % respectively at a temperature of 1600 °C, and slag with basicity of 5 with the same content of В2 О3 at the same temperature provided the amount of sulfur in metal 0.00036 and 0.00088 %, respectively. It should be noted that more favorable conditions for metal desulphurization provided the slag without В2 О3 oxide comparing with the boron containing one. Slag with basicity of 2 and 5 without В2 О3 according to the results of thermodynamic modeling allowed to obtain metal at temperature of 1600 °C with sulfur content of 0.0039 and 0.00019 %, respectively. Results of calculation of thermodynamic modeling of metal desulphurization process with boron-containing slags of СаО – SiO2 – MgO – Al2 O3 – B2 O3 system with basicity of 2 – 5 in temperature range of 1500 – 1700 °C correlate with experimental data and can apply to improving technology of steel desulphurization with boron-containing slags in steelmaking industry.
Keywords
About the Authors
V. A. SalinaRussian Federation
Cand. Sci. (Eng.), Senior Researcher
A. V. Sychev
Russian Federation
Cand. Sci. (Eng.), Senior Researcher
V. I. Zhuchkov
Russian Federation
Dr. Sci. (Eng.), Professor, Chief Researcher
A. A. Babenko
Russian Federation
Dr. Sci. (Eng.), Chief Researcher
References
1. Yavoiskii V.I., Kryakovskii Yu.V., Grigor’ev V.P., Nechkin Yu.M., Kravchenko V.F., Borodin D.I. Metallurgiya stali. Uchebnik dlya vuzov [Metallurgy of steel. Textbook for universities]. Moscow: Metallurgiya, 1983, 584 p. (In Russ.).
2. Chuiko N.M., Chuiko A.N. Teoriya i tekhnologiya elektroplavki stali [Theory and technology of electric steel melting]. Kiev-Donetsk: Golovnoe izd-vo, 1983, 248 p. (In Russ.).
3. Bigeev A.M., Bigeev V.A. Metallurgiya stali. Teoriya i tekhnologiya plavki stali. Uchebnik dlya vuzov [Metallurgy of steel. Theory and technology of steel melting. Textbook for universities]. Magnitogorsk: MTGU, 2000, 544 p. (In Russ.).
4. Kablukovskii A.F. Proizvodstvo elektrostali i ferrosplavov [Production of electric steel and ferroalloys]. Moscow: Akademkniga, 2003, 511 p. (In Russ.).
5. Dyudkin D.A., Kisilenko V.V. Proizvodstvo stali. Vnepechnaya metallurgiya stali [Steel production. Out-of-furnace metallurgy of steel]. Moscow: Teplotekhnik, 2010, vol. 3, 544 p. (In Russ.).
6. Novikov V.A., Tsarev V.A., Novikov S.V., Afanas’ev S.Yu., Batov Yu.M. Thermodynamic and kinetic features of desulphurization process. Elektrometallurgiya. 2012, no. 9, pp. 16–20. (In Russ.).
7. Sokolov G.A. Vnepechnoe rafinirovanie stali [Out-of-furnace refining of steel]. Moscow: Metallurgiya, 1977, 208 p. (In Russ.).
8. Wang H., Zhang T., Zhu H., Li G., Yan Y., Wang J. Effect of В2 О3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux. ISIJ International. 2011, vol. 51, no. 5, pp. 702–706.
9. Tursunov N.K., Semin A.E., Sanokulov E.A. Research of dephosphorization and desulfurization processes in smelting of 20GL steel in an induction crucible furnace with further processing in a ladle using rare earth metals. Chernye metally. 2017, no. 1, pp. 33–40. (In Russ.).
10. Akberdin A.A., Kim A.S., Esenzhulov A.B. Theoretical evaluation and industrial verification of smelting technology for refined ferrochromium using low-melting fluxes. In: Sb. trudov Mezhdunarodnoi nauchnoi konferentsii “Fiziko-khimicheskie osnovy metallurgicheskikh protsessov”, posvyashchennaya 110-letiyu so dnya rozhdeniya akademika A.M. Samarina [Papers of the Int. Sci. Conf. “Physical and Chemical Foundations of Metallurgical Processes” dedicated to the 110th anniversary of the birth of Academician A.M. Samarin]. Moscow: IMET RAN, 2012, p. 69. (In Russ.).
11. Vozchikov A.P., Demidov K.N., Smirnov L.A. etc. Development of boron-containing high-magnesia fluxes of rational composition for steelmaking and experimental evaluation of their physico-chemical and refining properties. Chernaya metallurgiya. Byul. in-ta “Chermetinformatsiya”. 2014, no. 11, pp. 35–38. (In Russ.).
12. Zhu Z.X., Li G.R., Wang H.M., Dai Q.X., Li B. J. Univ. Sci. Technol. 2006, bd. 28, p. 725.
13. Zharmenov A.A., Mukanov D.M., Akberdin A.A. etc. Complex processing of mineral raw materials in Kazakhstan. In: Bor v protsessakh podgotovki i metallurgicheskoi pererabotki zhelezorudnogo syr’ya [Boron in the processes of preparation and metallurgical processing of iron ore]. Astana: Foliant, 2003, vol. 3, pp. 3–87. (In Russ.).
14. Kim Gi Hyun, Sohn Il. Role of B2 O3 on the viscosity and structure in the CaO-Al2 O3 -Na2 O-based system. Metallurgical and Materials Transaction. 2014, vol. 45, no. 1, pp. 86–95.
15. Kim Youngyae, Morita Kazuki. Relationship between molten oxide structure and thermal conductivity in the CaO-SiO2 -B2 O3 system. ISIJ International. 2014, vol. 54, no. 9, pp. 2077–2083.
16. Sychev A.V., Salina V.A., Babenko A.A., Zhuchkov V.I. Research of the boron interfacial distribution between boron-bearing oxide and metal. Izvestiya VUZov. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy. 2017, no. 2, pp. 140–144. (In Russ.).
17. Wan Yong, Chen Weiqing. Effect of boron content on the microstructure and magnetic properties of non-oriented electrical steels. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2015, vol. 30, no. 3, pp. 574–579.
18. Velichko O.G., Kamkina L.V., Manidin V.S., Isava L.Є., Chervonii I.F. The role of boron in processes of obtaining of steel of high quality and the problem of its determination. Teoriya i praktika metallurgii. 2015, no. 1-2, pp. 104–108. (In Ukr.).
19. Bogdanov N.A., Sychkov A.B., Derevyanchenko I.V., Kucherenko O.L., Oleinik A.A., Parusov V.V., Starov R.V., Nesterenko A.M. Development and introduction of a technology for making boronbearing steels. Metallurgist. 1999, vol. 43, no. 1-2, pp. 71–75. (In Russ.).
20. Zhuchkov V.I., Sychev A.V., Akberdin A.A., Trofimov E.A., Salina V.A., Babenko A.A. Research and improvement of the process of obtaining of complex boron-containing ferroalloys. In: Sb. materialov XVI Mezhdunarodnoi konferentsii “Sovremennye problemy elektrometallurgii stali” [Materials of the XVI Int. Conf. “Modern Problems of Electrometallurgy of Steel”]. Chelyabinsk: YuUrGU, 2015, Part. 2, pp. 191–196. (In Russ.).
21. Zhuchkov V.I., Leont’ev L.I., Babenko A.A., Sychev A.V., Akberdin A.A. Advanced directions of using boron-containing materials in ferrous metallurgy. In: Sb. trudov XX Mendeleevskogo s”ezda po obshchei i prikladnoi khimii [Papers of the XXth Mendeleev Congress on General and Applied Chemistry]. Ekaterinburg: Ural’skoe otdelenie Rossiiskoi akademii nauk, 2016, vol. 3, p. 73. (In Russ.).
22. Roine A. Outokumpu HSC Chemistry for Windows. Chemical reactions and Equilibrium software with extensive thermochemical database. Pori: Outokumpu research OY, 2002.
Review
For citations:
Salina V.A., Sychev A.V., Zhuchkov V.I., Babenko A.A. THERMODYNAMIC MODELING OF THE PROCESS OF METAL DESULPHURATION BY BORON CONTAINING SLAGS OF THE СaО–SiO2 –MgO–Al2 O3 –B2 O3 SYSTEM. Izvestiya. Ferrous Metallurgy. 2017;60(12):955-959. (In Russ.) https://doi.org/10.17073/0368-0797-2017-12-955-959