STUDY OF ALLOYS MODIFICATION BY NANOMATERIALS
https://doi.org/10.17073/0368-0797-2017-11-897-903
Abstract
About the Authors
K. B. BorodyanskiyIsrael
Ph.D.,
40700, Ariel
M. I. Zinigrad
Russian Federation
Dr. Sci. (Physical Chemistry), Professor, Rector,
40700, Ariel
L. I. Leont’ev
Russian Federation
Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher,
Department of Chemistry and Material Sciences, 119991, Moscow, Leninskii prosp., 32a;
119334, Moscow, Leninskii prosp., 49;
119049, Moscow, Leninskii prosp., 4
References
1. Callister W.D. Materials Science and Engineering. 7th ed. Hoboken, NJ, USA: John Wiley & Sons Inc., 2007.
2. Schaffer P.L., Dahle A.K. Settling behavior of different grain refiners in aluminum. Mater. Sci. Eng. A. 2005, 413–414, pp. 373–378.
3. Y. Birol. AlB3 master alloy to grain refine AlSi10Mg and AlSi12Cu aluminum foundry alloys. J.Alloys Compd. 2012, 513, pp. 150–153.
4. Mohanty P.S., Gruzleski J.E. Mechanism of grain refinement in aluminum. Acta Metall. Mater. 1995, 43, pp. 2001–2012.
5. Wang C., Wang M., Yu , Chen D., Qin P., Feng M., Dai Q. The grain refinement behavior of TiB2 particles prepared with in situ technology. Mater. Sci. Eng. A. 2007, 459, pp. 238–243.
6. Chou N.S., Huang J.L., Lii D.F., Lu H.H. The mechanical properties of Al2 O3 /aluminum alloy A356 composite manufactured by squeeze casting. J. Alloys Compd. 2006, 419, pp. 98–102.
7. Daoud M. Abo-Elkhar. Influence of Al2 O3 or ZrO2 particulate addition on the microstructure aspects of AlNi and AlSi alloys. J. Mater. Process. Technol. 2002, 120, pp. 296–302.
8. Han Y., Le K., Wang J., Shu D., Sun B. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminum. Mater. Sci. Eng. A. 2005, 405, pp. 306–312.
9. Das A., Kotadia H.R. Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Sirich hypoeutectic Al-Si alloy. Mater. Chem. Phys. 2011, 125, pp. 853–859.
10. Zhang S., Zhao Y., Cheng X., Chen G., Dai Q. High-energy ultrasonic field effects on the microstructure and mechanical behaviors of A356 alloy. 2009, J. Alloys Compd. 470, pp. 168–172.
11. Lu H.T., Wang L.C., Kung S.K., Grain refining in A356 Alloys. J. Chin. Foundrym. Assoc. 1981, 29, pp. 10–18.
12. Sigworth G.K., Guzowski M.M. Grain refining of Hypo-eutectic Al-Si alloys. ASF Trans. 1985, 93, pp. 907–912.
13. Clapham L., Smith R.W. The mechanism of the partial modification of Al-Si eutectic alloys. J. Crys. Growth. 1986, 79 (1-3), part 2, pp. 866–873.
14. Kori S.A., Murty B.S., Chakraborty M. Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium. Mater. Sci. Eng. A. 2000, 283, pp. 94–104.
15. Shi Z.M., Wang Q., Zhao G., Zhang R.Y. Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys. Mater. Sci. Eng. A. 2015, 626, pp. 102–107.
16. Torre A.D.L., Pérez-Bustamante R., Camarillo-Cisneros J., GómezEsparza C.D., Medrano-Prieto H.M., Martínez-Sánchez R. Mechanical properties of the A356 aluminum alloy modified with La/Ce. J. Rare Earths. 2013, 31, pp. 811–816.
17. Flemings M.C., Riek R.G., Young K.P. Rheocasting. Mater. Sci. Eng. 1976, 25, pp. 103–117.
18. Kapranos P., Ward P.J., Atkinson H.V., Kirkwood D.H. Near net shaping by semi-solid metal processing. Mater. Des. 2000, 21, pp. 387–394.
19. Liao B.C., Park Y.K., Ding H.S. Effects of rheocasting and heat treatment on microstructure and mechanical properties of A356 alloy. Mater. Sci. Eng. A. 2011, 528(3), pp. 986–995.
20. Akbari M.K., Baharvandi H.R., Shirvanimoghaddam K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 2015, 66, pp. 150–161.
21. Sajjadi S.A., Parizi M.T., Ezatpour H.R., Sedghic A. Fabrication of A356 composite reinforced with micro and nano Al2 O3 particles by a developed compocasting method and study of its properties. J. Alloys Compd. 2012, 511, pp. 226–231.
22. Lobemeier D., Klein H., Nembach E. Grain boundary strengthening of copper-base copper–manganese and copper–gallium solid solutions. Acta mater. 1998, 46 (8), pp. 2909–2912.
23. Lewis A.C., Eberl C., Hemker K.J., Weihs T.P. Grain boundary strengthening in copper/niobium multilayered foils and fine-grained niobium. J. Mater. Res. 2008, 23 (2), pp. 376–382.
24. Ozerinc S., Tai K., Vo N.Q., Bellon P., Averback R.S., King W.P. Grain boundary doping strengthens nanocrystalline copper alloys. Scripta Materialia. 2012, 67, pp. 720–723.
25. Lekatou A., Karantzalis A.E., Evangelou A., Gousia V., Kaptay G., Gácsi Z., Baumli P., Simon A. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour. J. Mater. Des. 2015, 65, pp. 1121–1135.
26. Chattopadhyay A.K., Roy P., Sarangi S.K. Study of wettability test of pure aluminum against uncoated and coated carbide inserts. Surface Coat. Technol. 2009, 204, pp. 410–417.
27. Borodianskiy K., Kossenko A., Zinigrad M. Improvement of the mechanical properties of Al-Si alloys by TiC nanoparticles. Metall. Mat. Trans. A. 2013, 44 (8), pp. 4948–4953.
28. Lee K., Kwon Y.N., Lee J. Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, casting-forging, and squeezecasting processes. Alloys Compd. 2008, 461, pp. 532–541.
Review
For citations:
Borodyanskiy K.B., Zinigrad M.I., Leont’ev L.I. STUDY OF ALLOYS MODIFICATION BY NANOMATERIALS. Izvestiya. Ferrous Metallurgy. 2017;60(11):897-903. https://doi.org/10.17073/0368-0797-2017-11-897-903