NEURAL NETWORK MODEL OF IRON DIFFUSION IN AUSTENITIC STEELS
https://doi.org/10.17073/0368-0797-2017-11-891-896
Abstract
About the Authors
M. Yu. BelomyttsevRussian Federation
Dr. Sci. (Eng.), Professor of the Chair “Metallography and Physics of Strength”,
Moscow
S. M. Obraztsov
Russian Federation
Dr. Sci. (Phys.–Math.),
Obninsk
V. A. Solov’ev
Russian Federation
Senior Researcher,
Obninsk
References
1. Maksimov L.A., Ryazanov I. On the diffusion interaction of voids. Physics of Metals and Metallography. 1976, vol. 41, no. 2, pp. 46–53.
2. Garner F.A., Porollo S.I., Konobeev Yu.V. , Maksimkin O.P. Void swelling of austenitic steels irradiated with neutrons at low temperatures and very low dpa rates. In: Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors. Eds. Allen T.R., King P.J., Nelson L. TMS (The Minerals, Metals & Materials Society), 2005.
3. Vasilyev A.A., Sokolov S.F., Kolbasnikov N.G., Sokolov D.F. Effect of alloying on the self-diffusion activation energy in γ-iron. Phys. Solid State. 2011, vol. 53, Issue 11, pp. 2194–2200.
4. Osovskii S. Neironnye seti dlya obrabotki informatsii [Neural networks for information processing]. Moscow: Finansy i statistika, 2002, 344 p. (In Russ.).
5. Churyumov A.Yu., Khomutov M.G., Solonin A.N., Mukhanov E.L., Efimov V.M. Comparative study of the stress flow models for highboron corrosion-resistant steel based on an Arrhenius-type equation and artificial neural networks. Russian Metallurgy (Metally). 2014, no. 4, pp. 527–531.
6. Dudała J., Gilewicz-Wolter J., Stęgowski Z. Simultaneous measurement of Cr, Mn and Fe diffusionin chromium-manganese steels. NUKLEONIKA. 2005, vol. 50(2), pp. 67–71.
7. Ivantsov I.G., Blinkin A.M. Self-diffusion in highly diluted binary solutions. Part. III. Influence of Sn, Sb, Pb, Bi impurities on selfdiffusion of iron in γ-phase. Fizika metallov i metallovedenie. 1966, vol. 22, no. 6, pp. 876–883. (In Russ.).
8. Fedorov G.B., Semenikhin A.N. Influence of alloying on diffusion of elements in chromium-nickel steels. In: Sb. nauchnykh rabot [Collection of materials]. Emel’yanov V.S., Evtyukhin A.I. eds. Issue 2. Moscow: Atomizdat, 1962, pp. 252–258. (In Russ.).
9. Pavlinov L.V. Diffusion of iron and carbon in four-component ironchromium-nickel - molybdenum alloys in the gamma solid solution range. Physics of Metals and Metallography. 1976, vol. 41, no. 2, pp. 102–108.
10. Pavlinov L.V., Sugonyaev V.N., Gladyshev A.M. Issledovanie diffuzii zheleza, kobal’ta i margantsa v austenitnykh khromonikelevykh stalyakh 0Kh16N15M3B i 10Kh18N10T [Research of diffusion of iron, cobalt and manganese in austenitic chromium-nickel steels 0Cr16Ni15Мo3Nb and 10Cr18Ni10Тi]. Obninsk: FEI, 1980, Preprint FEI–1146, 13 p. (In Russ.).
11. Gruzin P.L., Kornev Yu.V., Kurdyumov G.V. Influence of carbon on iron self-diffusion. DAN SSSR. 1951, vol. 80, no. 1, pp. 49–51. (In Russ.).
12. Zelinskii M.S., Noskov B.M., Pavlov P.V., Shitova E.V. Influence of vanadium impurities on iron self-diffusion. Fizika metallov i metallovedenie. 1959, vol. 8, Issue 5, pp. 725–730. (In Russ.).
13. Gertsriken S.D., Pryanishnikov M.P. Influence of crystal lattice and all-round compression on parameters of self-diffusion of iron in pure iron and in iron with small additives of aluminum. Ukrainskii fizichnyi zhurnal. 1958, vol. III, no. 2, pp. 255–264. (In Ukr.).
14. Obraztsov S.M., Birzhevoi G.A. Konobeev Yu.V. etc. Butstrepanalysis of temperature dependence of iron self-diffusion in α-, γ- and δ-phases of iron. In: Trudy XVIII Mezhdunarodnogo soveshchaniya “Radiatsionnaya fizika tverdogo tela” [Proceedings of the 18th Int.Meeting “Radiative Physics of Solid State “]. Moscow: NII PMT pri MGIEM (TU), 2008, pp. 277–288. (In Russ.).
15. Gruzin P.L., Kuznetsov E.V., Kurdyumov G.V. Influence of the intragranular structure of austenite on iron self-diffusion. DAN SSSR. 1953, vol. 93, no. 6, pp. 1021–1023. (In Russ.).
16. Gruzin P.L. Influence of Cr on iron self-diffusion. In: Problemy metallovedeniya i fiziki metallov. Sb. 4 [Problems of metal science and metal physics. Part 4]. Moscow: Metallurgizdat, 1955, pp. 524–527. (In Russ.).
17. Tselishchev A.V., Ageev V.S., Budanov Yu.P., Ioltukhovskii A.G., Mitrofanova N.M., Leontieva-Smirnova M.V., Shkabura I.A., Zabud’ko L.M., Kozlov A.V., Mal’tsev V.V., Povstyanko A.V. Development of structural steel for fuel elements and fuel assemblies of sodium-cooled fast reactors. Atomic Energy. 2010, vol. 108, no. 4, pp. 274–280.
18. Obraztsov S.M., Konobeev Yu.V., Pechenkin V.A., Solov’ev V.A. Neural network research of influence of silicon and titan on irradiating swelling of austenitic stainless steel. In: Radiatsionnaya fizika tverdogo tela.Trudy 20 Mezhdunarodnogo soveshchaniya, Sevastopol’, 2010 [Radiation physics of solid body. Proceedings of the 20th International Meeting, Sevastopol, 2010]. Moscow: NII PMT MGIEM (TU), 2010, pp. 63–67. (In Russ.).
19. Portnykh I.A., Kozlov A.V., Panchenko V.L., Mitrofanova N.M. Characteristics of radiation porosity formed upon irradiation in a BN-600 reactor in the fuel-element cans of cold-deformed steel EK-164 (06Kh16N20M2G2BTFR)-ID c.d. Physics of Metals and Metallography. 2012, vol. 113, no. 5, pp. 520–531.
20. Portnykh I.A., Kozlov A.V., Panchenko V.L. Effect of dose and temperature parameters of neutron irradiation to maximum damaging dose of 77 dpa on characteristics of porosity formed in steel 0.07C- 16Cr-19Ni-2Mo-2Mn-Ti-Si-V-P-B. Physics of Metals and Metallography. 2014, vol. 115, no. 6, pp. 625–633.
Review
For citations:
Belomyttsev M.Yu., Obraztsov S.M., Solov’ev V.A. NEURAL NETWORK MODEL OF IRON DIFFUSION IN AUSTENITIC STEELS. Izvestiya. Ferrous Metallurgy. 2017;60(11):891-896. (In Russ.) https://doi.org/10.17073/0368-0797-2017-11-891-896