METHOD OF OBTAINING EXACT ANALYTICAL SOLUTIONS OF TASKS OF HEAT CONDUCTIVITY WITH WARMTH SOURCES
https://doi.org/10.17073/0368-0797-2017-11-877-882
Abstract
About the Authors
I. V. KudinovRussian Federation
Cand. Sci. (Eng.), Assist. Professor of the Chair “Theoretical Foundations of Thermal Engineering and Fluid Mechanics”,
Samara
E. V. Stefanyuk
Russian Federation
Dr. Sci. (Eng.), Professor of the Chair “Theoretical Foundations of Thermal Engineering and Fluid Mechanics”,
Samara
M. P. Skvortsova
Russian Federation
Postgraduate of the Chair “Theoretical Foundations of Thermal Engineering and Fluid Mechanics”,
Samara
G. N. Maksimenko
Russian Federation
Postgraduate of the Chair “Theoretical Foundations of Thermal Engineering and Fluid Mechanics”,
Samara
References
1. Kudinov V.A., Kudinov I.V. Analiticheskie resheniya parabolicheskikh i giperbolicheskikh uravnenii teplomassoperenosa [Analytical solutions of parabolic and hyperbolic equations of a heatmass transfer]. Moscow: Infra-M, 2013, 391 р. (In Russ).
2. LykovA.V.Methodsofsolutionofnonlinearequationsofnon-stationaryheatconductivity.Energetika i transport.1970,no.5,pp.109–150. (In Russ).
3. Gudmen T. Application of integrated methods in nonlinear problems of non-stationary heat exchange. In: Problemy teploobmena. Sb. nauch. tr. [Problems of heat exchange. Coll. of Sci. Papers]. Moscow: Atomizdat, 1967, pp. 41–53. (In Russ).
4. Biot Maurice A. Variational principles in heat transfer. Clarendon Press, 1970. (Russ.ed.: Biot M. Variatsionnye printsipy v teorii teploobmena. Moscow: Energiya, 1975, 209 p.).
5. Veinik A.I. Priblizhennyi raschet protsessov teploprovodnosti [Approximate calculation of processes of heat conductivity]. MoscowLeningrad: Gosenergoizdat, 1959, 184 р. (In Russ).
6. Shvets M.E. On the approximate solution of some problems of hydrodynamics of an interface. Prikladnaya matematika i mekhanika. 1949, vol. 13, no. 3, pp. 257–266. (In Russ).
7. Timoshpol’skii V.I., Postol’nik Yu.S., Andrianov D.N. Teoreticheskie osnovy teplofiziki i termomekhaniki v metallurgii [Theoretical fundamentals of thermophysics and thermomechanics in metallurgy]. Minsk: Belorusskaya navuka, 2005, 560 р. (In Russ).
8. Glazunov Yu.T. Variatsionnye metody [Variation methods]. Moscow-Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”, 2006, 470 р. (In Russ).
9. Belyaev N.M., Ryadno A.A. Metody nestatsionarnoi teploprovodnosti [Methods of non-stationary heat conductivity]. Moscow: Vysshaya shkola, 1978, 328 р. (In Russ).
10. Kudinov V.A., Stefanyuk E.V. Analytical solution method for heat conduction problems based on the introduction of the temperature perturbation front and additional boundary conditions. Journal of Engineering Physics and Thermophysics. 2009, vol. 82, Issue 3, pp. 537–555.
11. Stefanyuk E.V., Kudinov V.A.Approximate analytic solution of heat conduction problems with a mismatch between initial and boundary conditions. Russian Mathematics. 2010, vol. 54, Issue 4, pp. 55–61.
12. Kudinov V.A., Kudinov I.V., Skvortsova M.P. Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies. Computational Mathematics and Mathematical Physics. 2015, vol. 55, no. 4, pp. 666–676.
13. Formalev V.F., Kuznetsova E.L., Rabinskiy L.N. Localization of thermal disturbances in nonlinear anisotropic media with absorption. High Temperature. 2015, vol. 53, Issue 4, pp. 548–553.
14. Formalev V.F., Kolesnik S.A., Kuznetsova E.L., Rabinskiy L.N. Heat and mass transfer in thermal protection composite materials upon high temperature loading. High Temperature. 2016, vol. 54, Issue 3, pp. 390–396.
15. Kantorovich L.V. One method of approximate solution of the differential equations in private derivatives. Dokl. AN SSSR. 1934, vol. 2, no. 9, рp. 532–534. (In Russ).
16. KantorovichL.V.,KrylovV.I.Priblizhennye metody vysshego analiza [Approximate methods of the highest analysis]. Moscow: Gosteorizdat, 1952, 695 р. (In Russ).
17. Fedorov F.M. Granichnyi metod resheniya prikladnykh zadach matematicheskoi fiziki. [Boundary method of decision of application-oriented tasks of mathematical physics]. Novosibirsk: Nauka, 2000, 220 p. (In Russ).
18. Fedorov F.M. Granichnyi metod resheniya prikladnykh zadach matematicheskoi fiziki i ego prilozheniya v geomekhanik: avtoref. dis. dokt. fiz.-mat. nauk [Boundary method of the decision of application-oriented tasks of mathematical physics and its application in geomechanics: Extended Abstract of the Dr. Sci. (Phys.–Math.) Diss.]. Novosibirsk: In-t vychisl. matem. i matem. fiziki SO RAN, 2002. (In Russ).
19. Kudryashov L.I., Men’shíkh N.L. Priblizhennye resheniya nelineinykh zadach teploprovodnosti [Approximate solutions of nonlinear problems of heat conductivity]. Moscow: Mashinostroenie, 1979, 232 p. (In Russ).
20. Tsoi P.V. Sistemnye metody rascheta kraevykh zadach teplomassoperenosa [System methods of calculation of regional problems of heatmass transfer]. Мoscow: MEI, 2005, 568 p. (In Russ).
21. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tverdykh tel [Analytical methods in the theory of heat conductivity of solid bodies]. Moscow: Vysshaya shkola, 2001, 550 p. (In Russ).
22. Lykov A.V. Teoriya teploprovodnosti [Theory of heat conductivity]. Moscow: Vysshaya shkola, 1967, 600 p. (In Russ). Acknowledgements. The work was financially supported by the Ministry of Education and Science of the Russian Federation in the framework of the basic part of the state assignment of the FSBUU of the “SamSTU” (project No. 1.5551.2017/BCh).
Review
For citations:
Kudinov I.V., Stefanyuk E.V., Skvortsova M.P., Maksimenko G.N. METHOD OF OBTAINING EXACT ANALYTICAL SOLUTIONS OF TASKS OF HEAT CONDUCTIVITY WITH WARMTH SOURCES. Izvestiya. Ferrous Metallurgy. 2017;60(11):877-882. (In Russ.) https://doi.org/10.17073/0368-0797-2017-11-877-882